Rozsáhlá třída inženýrských optimalizačních úloh vede na modely s omezeními ve tvaru obyčejných nebo parciálních diferenciálních rovnic (ODR nebo PDR). Protože diferenciálních rovnice je možné řešit analyticky jen v nejjednodušších případech, bylo k řešení použito numerických metod založených na diskretizaci oblasti. Zvolili jsme metodu konečných prvků, která umožňuje převod omezení ve tvaru diferenciálních rovnic na omezení ve tvaru soustavy lineárních rovnic. Reálné problémy jsou často velmi rozsáhlé a přesahují dostupnou výpočetní kapacitu. Výpočetní čas lze snížit pomocí progressive hedging algoritmu (PHA), který umožňuje paralelní implementaci. PHA je efektivní scénářová dekompoziční metoda pro řešení scénářových stochastických úloh. Modifikovaný PHA byl využit pro původní přístup prostorové dekompozice. Aproximace diferenciálních rovnic v modelu problému je dosaženo pomocí diskretizace oblasti. Diskretizace je dále využita pro prostorovou dekompozici modelu. Algoritmus prostorové dekompozice se skládá z několika hlavních kroků: vyřešení problému s hrubou diskretizací, rozdělení oblasti problému do překrývajících se částí a iterační řešení pomocí PHA s jemnější diskretizací s využitím hodnot z hrubé diskretizace jako okrajových podmínek. Prostorová dekompozice byla aplikována na základní testovací problém z oboru stavebního inženýrství, který se zabývá návrhem rozměrů průřezu nosníku. Algoritmus byl implementován v softwaru GAMS. Získané výsledky jsou zhodnoceny vzhledem k výpočetní náročnosti a délce překrytí.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:230116 |
Date | January 2012 |
Creators | Šabartová, Zuzana |
Contributors | Mrázková, Eva, Popela, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0034 seconds