Return to search

Routing, Resource Allocation and Network Design for Overlay Networks

Overlay networks have been the subject of significant research and practical interest recently in addressing the inefficiency and ossification of the current Internet. In this thesis, we cover various aspects of overlay network design, including overlay routing algorithms, overlay network assignment and multihomed overlay networks. We also examine the behavior of overlay networks under a wide range of network settings and identify several key factors that affect the performance of overlay networks. Based on these findings, practical design guidelines are also given. Specifically, this thesis addresses the following problems:
1) Dynamic overlay routing: We perform an extensive simulation study to investigate the performance of available bandwidth-based dynamic overlay routing from three important aspects: efficiency, stability, and safety margin. Based on the findings, we propose a hybrid routing scheme that achieves good performance in all three aspects. We also examine the effects of several factors on overlay routing performance, including network load, traffic variability, link-state staleness, number of overlay hops, measurement errors, and native sharing effects.
2) Virtual network assignment: We investigate the virtual network (VN) assignment problem in the scenario of network virtualization. Specifically, we develop a basic VN assignment scheme without reconfiguration and use it as the building block for all other advanced algorithms. Subdividing heuristics and adaptive optimization strategies are presented to further improve the performance. We also develop a selective VN reconfiguration scheme that prioritizes the reconfiguration for the most critical VNs. 3) Overlay network configuration tool for PlanetLab: We develop NetFinder, an automatic overlay network configuration tool to efficiently allocate PlanetLab resources to individual overlays. NetFinder continuously monitors the resource utilization of PlanetLab and accepts a user-defined overlay topology as input and selects the set of PlanetLab nodes and their interconnection for the user overlay. 4) Multihomed overlay network: We examine the effectiveness of combining multihoming and overlay routing from the perspective of an overlay service provider (OSP). We focus on the corresponding design problem and examine, with realistic network performance and pricing data, whether the OSP can provide a network service that is profitable, better (in terms of round-trip time), and less expensive than the competing native ISPs.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14017
Date13 November 2006
CreatorsZhu, Yong
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format1777725 bytes, application/pdf

Page generated in 0.0024 seconds