Return to search

Comportement de revêtements nanostructurés deposés par PVD en condition environnementales sevères / Behaviour of physical vapor deposited nanocomposite coatings under extreme environments

Afin d’obtenir des matériaux aux caractéristiques mécaniques, tribologiques et thermiques améliorées, nous avons élaboré des revêtements nanocomposites à base de TiN en utilisant une technique de dépôt physique en phase vapeur. Ces matériaux aux caractéristiques spécifiques peuvent être exploités pour le surfaçage d’outils de coupe de très haute dureté. En ajustant les processus d’élaboration dont dépendent la microstructure et la microchimie des revêtements, il est possible de contrôler les propriétés de ces matériaux. Cette thèse présente les résultats obtenus sur les trois systèmes de revêtement que sont Ti-Al-N, Ti-Al-Y-N et Ti-Si-N, configurés soit en réseaux superposés multicouche soit en nanocomposites. L’accent est mis sur l’étude systématique de la dureté et de la résistance à l’usure et à l'oxydation en fonction des paramètres de dépôt. En combinant la diffraction des rayons X et la microscopie électronique à transmission avec des tests physico-mécaniques sur une large gamme de configurations de revêtement, on établit une matrice processus-performance prédictive permettant de guider la fabrication de surfaces durcies. / TiN-based nanocomposite coatings were prepared using physical vapor deposition to deliver enhanced mechanical, tribological and thermal characters that can be exploited for superhard cutting tool surfacing. These properties are controlled by tailoring processing methods to tune the microstructure and microchemistry. This thesis examined three coating systems, which are Ti-Al-N, Ti-Al-Y-N and Ti-Si-N, configured variously as multilayer superlattices and nanocomposites to comprehensively correlate hardness, wear resistance and oxidation resistance with deposition parameters. Combining X-ray diffraction and transmission electron microscopy with physical-mechanical testing, over a wide range of coating configurations, enabled construction of a predictive process-performance matrix to guide the fabrication of hardened surfaces.In multilayer TiN/TixAl1-xN coatings prepared by cathodic arc deposition, the mechanical properties were controlled by the layer period that was adjusted by varying substrate rotation speed. A hardness of 39 ± 4 GPa was achieved for a superlattice period of 13 nm, where the coatings contain columnar <111> textured rock salt – type crystals connected by low-angle grain boundaries. When yttrium was introduced to the multilayers, by adding a Y - metal target powered by DC magnetron sputtering, the morphology changed from columnar to acicular grains with smaller grain size. Specifically, by fixing the period at 5.5 nm and incorporating Y from 0 to 2.4 at% the grain size decreased (from 100-200 nm to 20-30 nm) and hardness increased (from 29 ± 7 GPa to 41 ± 3 GPa). The improved performance was a consequence of solid solution hardening that arises from the misfit strain field introduced by Y (element atomic radii 2.12 Å) substitution for Ti (1.76 Å) or Al (1.18 Å), and a nanosize effect, where finer grains result in a greater volume fraction of grain boundaries that block dislocation movement. Higher Y additions also retard oxidation as high temperature (800 ºC) annealing generates Ti2O3, rather than TiO2 as in Y-free coatings, and also affects Al oxidation. Adhesion and wear resistance were not compromised by higher Y contents demonstrating that TiN/TixAl1-xN coatings can enhance mechanical properties and thermal stability. Notably, this work employed a pure Y target, instead of a Ti-Al-Y alloy target, and substrate holder rotation speed was the critical parameter, where faster substrate rotation leads to smaller periods and more uniform Y distribution. However, an Y-rich layer became progressively thicker at slower rotation with the period increasing from 5.5 nm to 24 nm. These Y-rich regions seeded crystal nucleation that reduced coherency at layer interfaces and grain boundaries to significantly degrade mechanical properties (41 ± 3 GPa to 30 ± 5 GPa). Therefore, the period and Y content work in tandem in multilayered TiN/TixAl1-xN coatings and the optimized Y content was to be 2.4 at% at a period of 5.5 nm.Nanocrystallite TiN / amorphous (a)-Si3N4 nanocomposites were fabricated by high power impulse magnetron sputtering. The introduction of silicon by controlling the Si target current can be used to modify the coating structure, tailor mechanical properties, improve wear resistance and passivate oxidation. Smaller crystal sizes promoted at higher Si content lead to TiN / amorphous (a)-Si3N4 nanocomposites, with ~10 at% Si/(Si+Ti) yielding maximum hardness (41 ± 3 GPa). Compared to TiN, Ti0.903Si0.097N showed enhanced resistance to oxidation and wear resistance, however, the TiN crystallites were not completely encapsulated by a-Si3N4 intergranular films and further optimization of the structure and property relationship can be realised.

Identiferoai:union.ndltd.org:theses.fr/2017GREAI053
Date18 January 2017
CreatorsWang, Jingxian
ContributorsGrenoble Alpes, Nanyang Technological University, Wouters, Yves, Pascal, Céline, Zhili, Dong
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds