Return to search

Field enhanced thermionic emission from oxide coated carbon nanotubes

A cathode structure was demonstrated that utilizes aligned carbon nanotubes (CNTs) to improve the thermionic electron emission by increasing the field enhancement of the cathode surface. Aligned CNTs were grown on the surface of a tungsten substrate by plasma enhanced chemical vapor deposition. The tungsten-CNT structure was further coated with a thin film of low work function emissive materials by magnetron sputtering. Numerous cathodes with varying CNT morphology and oxide layer thickness were created. The field and thermionic emission of the cathodes were tested in order to study the effects of the surface properties on the emission characteristics. It was observed that the introduction of CNTs into an oxide cathode structure improves both the thermionic and field emission, even in cathodes with relatively low field enhancement factors. Because of the high field enhancement factors that are available for CNTs, there remains a potential for dramatically improved electron emission. / Department of Physics and Astronomy

Identiferoai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:handle/188113
Date January 2006
CreatorsDay, Christopher M.
ContributorsJin, Feng
Source SetsBall State University
Detected LanguageEnglish
Formatvii, 143 leaves : ill. ; 28 cm.
SourceVirtual Press

Page generated in 0.0024 seconds