Return to search

Kinetic modeling of the polypropylene photothermal oxidation

Developing numerical tools for polymer lifetime prediction constitutes a promising opportunity for shortening the duration of material certification procedures in the automotive industry without decreasing their reliability. This PhD thesis aims at modeling the photothermal oxidation of isotactic polypropylene (iPP), which is responsible for the alteration of both its mechanical and aspect properties. The adopted approach consists in coupling the kinetics of photo- and thermo-oxidation reactions with physical phenomena, such as oxygen transport and UV-light attenuation in the material thickness, in order to describe all the physico-chemical changes. Upper-scale properties, from which will be defined the end-of-life criteria, will be calculated afterwards by applying the suitable structure-property relationships. The main challenge was to extend the pre-existing kinetic model of thermal ageing to photothermal ageing by taking into account initiation reactions of photolysis. Heavy campaigns of ageing and characterization tests made on a reference iPP, as well as an exhaustive capitalization of literature data of other iPPs, have allowed elaborating a kinetic model of photothermal oxidation and to generalize it to the whole iPP family in large domains of oxygen partial pressure (from 0.2 to 50 bars), temperature (from 40 to 230°C) and UV-light exposure (variable intensities and light sources) describing both natural and accelerated ageing conditions. The experimental validation of the model has allowed substantiating the kinetic approach and showing its limitations, as well as highlighting some numerical issues. The model has been designed in order to be an upgradable numerical tool which will allow, at term, optimizing the representativeness of the ageing testing devices and the performance of commercial iPP formulations. All these theoretical and numerical developments are prone to be applied to the photothermal degradation of other types of polymer substrates, but also in other application fields of the macromolecular photochemistry such as UV-photopolymerization.Keywords: Polypropylene, photothermal oxidation, oxygen diffusion control, screen effect, kinetic modeling, lifetime prediction.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-01069008
Date19 June 2014
CreatorsFrancois heude, Alexandre
PublisherEcole nationale supérieure d'arts et métiers - ENSAM
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.002 seconds