Return to search

Fundamentals and Industrial Applications: Understanding First Row Transition Metal (Oxy)Hydroxides as Oxygen Evolution Reaction Catalysts

Intermittent renewable energy sources, such as solar and wind, will only be viable if the electrical energy can be stored efficiently. It is possible to store electrical energy cleanly by splitting the water into oxygen (a clean byproduct) and hydrogen (an energy dense fuel) via water electrolysis. The efficiency of hydrogen production is limited, in part, by the high kinetic overpotential of the oxygen evolution reaction (OER). OER catalysts have been extensively studied for the last several decades. However, no new highly active catalyst has been developed in decades. One reason that breakthroughs in this research are limited is because there have been many conflicting activity trends. Without a clear understanding of intrinsic catalyst activity it is difficult to identify what makes catalysts active and design accordingly. To find commercially viable catalysts it is imperative that electrochemical activity studies consider and define the catalyst’s morphology, loading, conductivity, composition, and structure.

The research goal of this dissertation is twofold and encompasses 1) fundamentally understanding how catalysis is occurring and 2) designing and developing a highly active, abundant, and stable OER catalyst to increase the efficiency of the OER. Specifically, this dissertation focuses on developing methods to compare catalyst materials (Chapter II), understanding the structure-compositional relationships that make Co-Fe (oxy)hydroxide materials active (Chapter III), re-defining activity trends of first row transition metal (oxy)hydroxide materials (Chapter IV), and studying the role of local geometric structure on active sites in Ni-Fe (oxy)hydroxides (Chapter V). As part of a collaboration with Proton OnSite, the catalysts studied are to be integrated into an anion exchange membrane water electrolyzer in the future.

This dissertation includes previously published and unpublished co-authored material. / 10000-01-01

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/22633
Date06 September 2017
CreatorsStevens, Michaela
ContributorsLonergan, Mark
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
RightsAll Rights Reserved.

Page generated in 0.0027 seconds