Transient Receptor Potential Melastatin 7 (TRPM7) is a ubiquitously expressed divalent cation channel implicated as a key regulator of neuronal cell death in stroke. Our research group has previously shown that TRPM7 dependent cytoskeletal regulation particularly via cofilin mediates neuronal death in oxygen glucose deprivation (in vitro stroke model). LIMK1 phosphorylation was also shown to decrease downstream of TRPM7 activation during anoxia. In the present study we investigated the effects of TRPM7 activation during anoxia, on three regulators of LIMK and cofilin; Rho-associated kinase 2 (ROCK2), P-21 activated kinase 3 (PAK3) and Slingshot family phosphatase 1 (SSH1). Our findings suggest that PAK3 activity is downregulated during OGD through TRPM7 independent mechanisms. However, SSH1 activity appears to be regulated downstream of TRPM7 in a manner that is consistent with LIMK and cofilin regulation. Overall, our work suggests that SSH1 is a new link between anoxia-induced TRPM7activity and cofilin hyperactivation.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/42987 |
Date | 29 November 2013 |
Creators | Kola, Ervis |
Contributors | Aarts, Michelle |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds