Return to search

Investigation of the Effects of Sequential Anaerobic, Anoxic and Aerobic Zones on Dissolved Oxygen Transfer Parameters in a biological Nutrient Removal Pilot Plant

Bench and pilot scale determinations of the volumetric oxygen transfer coefficient, K<sub>L</sub>a, were performed on an improved A²/O biological nutrient removal (BNR) pilot plant. Effluent from a full scale primary clarifier, used as pilot plant influent, was found to have an alpha (ratio of process to clean water K<sub>L</sub>a) of 0.71 as determined in a 21 liter bench scale reactor and an alpha of 0.332 as determined in a 0.45 m³ aeration basin of the 2.4 m³ pilot plant. Alpha of a 1:1 mixture of primary clarifier effluent with pilot plant return activated sludge was determined to be 0.94 at bench scale and 0.71 at pilot scale. An assay of alphas through the initial non aerated treatment zones of the pilot plant using the bench scale reactor indicated that alphas peaked in the effluent of the first anaerobic zone (alpha equal to 1.01) and were lower in the second anaerobic zone and first anoxic zone. An assay of alphas in the three pilot plant series sideline aeration basins indicated that alpha was maximum in the first aeration basin (alpha equal to 0.905) and were lower in the second and third aeration basins (0.716 and 0.661 respectively). A consistent increase in average surface tension was noted from the first to second to third aeration basins, however the differences were not statistically significant. A comparison of pilot plant alphas determined in the first aeration basin following anaerobic nominal hydraulic retention times of 0.0, 0.21, 0.43, and 0.64 hours yielded alpha values of 0.71, 0.94, 0.64, and 0.74 respectively. Like the assay using the bench scale reactor, the alpha values at pilot scale peaked following treatment in only one anaerobic zone (nominal HRT of 0.21 hours). The study concludes that short exposures in an initial anaerobic reactor as required for biological phosphorus removal may benefit oxygen transfer efficiency through increased alphas, however the benefits of long periods of anaerobic reaction time (over 0.43 hours) are uncertain. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/46264
Date16 December 1998
CreatorsNair, Arthur William
ContributorsEnvironmental Engineering, Randall, Clifford W., Little, John C., Love, Nancy G.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationNAIRTHESIS.PDF

Page generated in 0.0099 seconds