Dielectric constant is a physical property of soil that is often measured using non-invasive geophysical techniques in subsurface characterization studies. A proper understanding of dielectric responses allows investigators to make measurements that might otherwise require more invasive and/or destructive methods. Previous studies have suggested that dielectric models could be refined by accounting for the contributions of different types of mineral constituents that affect the ratio and properties of bound and bulk water. This study tested the hypothesis that the dielectric responses of porous materials are mineral-specific through differences in surface area and chemistry. An experimental design was developed to test the dielectric behavior of pure quartz sand (Control), quartz sand/kaolin clay mixtures and ferric oxyhydroxide coated quartz sand. Results from the experiments show that the dielectric responses of quartz-clay and iron oxyhydroxide modified samples are not significantly different from the pure quartz Control. Increasing clay content in quartz sands leads to a vertical displacement between fitted polynomials. The results suggest that the classic interpretation for the curvature of dielectric responses appears to be incorrect. The curvature of dielectric responses at low water contents appears to be controlled by unknown parameters other than bound water. A re-examination of the experimental procedure proposed in this study and past studies shows that a properly designed study of bound water effects on dielectric responses has not yet been conduct / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/42579 |
Date | 05 June 2012 |
Creators | Cangialosi, Michael Vincent |
Contributors | Geosciences, Dove, Patricia M., Weiss, Chester J., Rimstidt, J. Donald |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Cangialosi_MV_T_2012.pdf |
Page generated in 0.003 seconds