Return to search

Ultrafine Bubble-Enhanced Ozonation For Water Treatment

Ultrafine bubbles, often referred to as nanobubbles, have been used in various applications from environmental remediation to medicine. Even though the technology to generate ultrafine bubbles has been around for many years, the full potential of its applications has not been completely studied. This project seeks to study the use of ultrafine bubble technology for water treatment in combination with ozone gas. A factorial design experiment was chosen to test the effects of ultrafine bubbles on the concentration of an indicator organism, E. coli, in water as well as their effects on ozone gas being injected into water. Ozone gas or nitrogen gas was injected into water contaminated with E. coli as either ultrafine bubbles or fine bubbles as treatments for up to 60 minutes. Ultrafine bubbles were found to not have any significant effect on the concentration of E. coli in water. However, ultrafine bubbles did provide benefits when used in conjunction with ozone gas that regular, fine bubbles did not provide. The benefits included allowing the concentration of dissolved ozone in the water to decrease at a slower rate as well as allowing more ozone to dissolve into water at a higher rate than conventional methods of bubbling in ozone. While in this particular set of experiments the concentration of dissolved ozone in water didn't surpass 2 mg/L, which didn't allow for rapid disinfection and treatment of water, it is believed that with a more powerful ozone generator better results can be achieved. This project demonstrates the benefits and potential of injecting ozone gas as ultrafine bubbles into water as a way to effectively and efficiently disinfect and treat water.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621853
Date January 2016
CreatorsHung, Isaac, Hung, Isaac
ContributorsLivingston, Peter, Slack, Donald, Yitayew, Muluneh
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds