A Tomografia por Emissão de Pósitrons (PET - Positron Emission Tomography) é uma modalidade de imagens para o diagnóstico em Medicina Nuclear. São utilizados radiofármacos emissores de pósitrons que possibilitam obter imagens que representam o processo bioquímico dessas substâncias no órgão ou tecido de interesse in vivo. São detectados, em coincidência, os fótons provenientes da aniquilação pósitron/elétron, que ocorre dentro do corpo do paciente. Esta informação é posteriormente utilizada para a reconstrução do objeto em estudo. Atualmente, existem dois tipos de equipamentos capazes de realizar estudos tomográficos por emissão de pósitrons: o dedicado e a câmara PET/SPCET. Este trabalho abordou este último tipo, que permite também a realização de exames habituais de Medicina Nuclear, que usam emissores de fótons. Existem dificuldades inerentes ao método de aquisição destas imagens que afetam a quantificação de índices ou atividade. Elas estão relacionadas ao fato de a emissão de radiação obedecer a uma distribuição de Poisson, às interações físicas da radiação com o corpo do paciente e com o detector, ao ruído devido à natureza estatística destas interações e de todo o processo de detecção, assim como à metodologia de aquisição dos exames (preparo e posicionamento do paciente, taxa de contagens etc.). Correções são propostas na literatura que não são totalmente implementadas pelos fabricantes: de espalhamento, de atenuação, de eventos aleatórios, do tempo morto, de decaimento, da resolução espacial e de outras características do equipamento. O objetivo deste trabalho foi o de realizar um estudo dos métodos aplicados por dois fabricantes, assim como algumas influências das características técnicas das câmaras PET/SPECT na obtenção do índice de SUV (Standardized Uptake Value). Para isso, dados de simuladores físicos, dispostos em várias montagens, foram obtidos com uma câmara no modo 3D e outra no modo 20. Constatou-se também que a forma das fontes usadas para calibração influencia no resultado final e impõe novos desafios para a quantificação em uma situação clínica. Por fim, no momento da quantificação, a região de interesse deve ser escolhida de acordo com aquela usada para a determinação dos coeficientes de correção e calibração. Verificou-se que é viável realizar quantificações com câmaras PET/SPECT, inclusive o índice SUV. Para tanto, além das correções citadas anteriormente, é imprescindível ter o equipamento bem ajustado, assim como a obtenção de coeficientes para normalização da sensibilidade e correção do efeito de volume parcial. / Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, randoms, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 20, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be dealt with carefully in clinical quantification. Finally, the choice of the region of interest is critical and it should be the same used to calculate the correction factors.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07032014-153006 |
Date | 04 March 2005 |
Creators | Pozzo, Lorena |
Contributors | Robilotta, Cecil Chow |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.1412 seconds