Este trabalho visa apresentar métodos de categorização de variáveis explicativas contínuas em Análise de Sobrevivência. Do ponto de vista clínico, agrupar pacientes em grupos de risco distintos é importante para agilizar tomadas de decisões; entretanto, perda de informação e outros problemas estatísticos podem ocorrer. Portanto, métodos para seleção de pontos de corte e correção dos possíveis problemas gerados pela categorização são criticamente avaliados. Para a aplicação e comparação dos métodos são utilizados dados do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor - FMUSP), em que a variável fração de ejeção é dicotomizada e tricotomizada. / This dissertation aims to present methods of categorization for continuous variables in Survival Analysis. From a clinical point of view, grouping patients into distinct risk groups is important for accelerating decision-making; however, loss of information and other statistical problems may occur. Therefore, methods for selecting cutpoints and correcting problems generated by categorization are critically evaluated. For the application and comparison of the methods, the dataset from Heart Institute - University of Sao Paulo Medical School (InCor FMUSP) is used, in which the variable ejection fraction is dichotomized and trichotomized.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25072017-192703 |
Date | 05 June 2017 |
Creators | Gisele Cristine Eugenio |
Contributors | Antonio Carlos Pedroso de Lima, Lucia Pereira Barroso, Liciana Vaz de Arruda Silveira |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds