Return to search

Vliv první transmembránové domény na kinetiku desenzitizace P2X4 receptoru. / On the role of the first transmembrane domain in desensitization kinetics of the P2X4 receptor.

Extracellular adenosin-5'-triphosphate (ATP) is an important signalling molecule. Cells of eukaryotic tissues release ATP and express responding purinergic receptors. Ionotropic P2X receptors are trimeric ion channels permeable for K+, Na+ and Ca2+ ions. Each subunit consists of two transmembrane domains (TM1 and TM2), an extracellular loop and intracellular N- and C- termini. The transmembrane region is formed by six helical domains. According to the known crystal structure of zfP2X4 receptor, TM1 helixes are oriented peripherally and stabilize TM2 helixes which form the ion gate. However, eletrophysiological studies revealed that TM1 might also participate in channel gating and forming of the ion pore in the open state. The aim of this work was to investigate the role of TM1 in the process of desensitization of rat P2X4 receptor using cystein-scanning mutagenesis. Mutation of two residues (in Asn32 and Tyr42) prolonged desensitization of P2X4 receptor. Moreover, experiments with a partial agonist α,β-methylenadenosin-5'-triphosphate (αβ-meATP) proved that conformation change of TM domains in the process of desensitization is independent on conformation change caused by an agonist binding. Conserved residue Tyr42 is located in the proximity of TM2 of neighbouring subunit. It probably interacts with Met336...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:312734
Date January 2011
CreatorsKalasová, Ilona
ContributorsZemková, Hana, Krůšek, Jan
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds