Le calcul des valeurs propres intervient dans des modèles de maladies d’épidémiques et pourrait être utilisé comme un allié des campagnes de vac- cination dans les actions menées par les organisations de soins de santé. La modélisation épidémique peut être considérée, par analogie, comme celle des viruses d’ordinateur qui dépendent de l’état de graphe sous-jacent à un moment donné. Nous utilisons PageRank comme méthode pour étudier la propagation de l’épidémie et d’envisager son calcul dans le cadre de phé- nomène petit-monde. Une mise en œuvre parallèle de méthode multiple de "implicitly restar- ted Arnoldi method" (MIRAM) est proposé pour calculer le vecteur propre dominant de matrices stochastiques issus de très grands réseaux réels. La grande valeur de "damping factor" pour ce problème fait de nombreux algo- rithmes existants moins efficace, tandis que MIRAM pourrait être promet- teuse. Nous proposons également dans cette thèse un générateur de graphe parallèle qui peut être utilisé pour générer des réseaux synthétisés distri- bués qui présentent des structures "scale-free" et petit-monde. Ce générateur pourrait servir de donnée pour d’autres algorithmes de graphes également. MIRAM est mis en œuvre dans le cadre de trilinos, en ciblant les grandes données et matrices creuses représentant des réseaux sans échelle, aussi connu comme les réseaux de loi de puissance. Hypergraphe approche de partitionnement est utilisé pour minimiser le temps de communication. L’al- gorithme est testé sur un grille national de Grid5000. Les expériences sur les très grands réseaux tels que Twitter et Yahoo avec plus de 1 milliard de nœuds sont exécutées. Avec notre mise en œuvre parallèle, une accélération de 27× est satisfaite par rapport au solveur séquentiel / The eigenvalue equation intervenes in models of infectious disease prop- agation and could be used as an ally of vaccination campaigns in the ac- tions carried out by health care organizations. The epidemiological model- ing techniques can be considered by analogy, as computer viral propagation which depends on the underlying graph status at a given time. We point out PageRank as method to study the epidemic spread and consider its calcula- tion in the context of small-world phenomenon. A parallel implementation of multiple implicitly restarted Arnoldi method (MIRAM) is proposed for calculating dominant eigenpair of stochastic matrices derived from very large real networks. Their high damp- ing factor makes many existing algorithms less efficient, while MIRAM could be promising. We also propose in this thesis a parallel graph gen- erator that can be used to generate distributed synthesized networks that display scale-free and small-world structures. This generator could serve as a testbed for graph related algorithms. MIRAM is implemented within the framework of Trilinos, targeting big data and sparse matrices representing scale-free networks, also known as power law networks. Hypergraph partitioning approach is employed to minimize the communication overhead. The algorithm is tested on a nation wide cluster of clusters Grid5000. Experiments on very large networks such as twitter and yahoo with over 1 billion nodes are conducted. With our parallel implementation, a speedup of 27× is met compared to the sequential solver
Identifer | oai:union.ndltd.org:theses.fr/2015VERS001V |
Date | 11 February 2015 |
Creators | Liu, Zifan |
Contributors | Versailles-St Quentin en Yvelines, Emad, Nahid, Lamure, Michel, Ben Amor, Soufian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0038 seconds