We use a sample of Milky Way (MW) analogues for which we have stellar and disc gas mass measurements, published measurements of halo gas masses of the MW and of similar galaxies, and the well-established value of the cosmological baryon fraction to place a lower bound on the mass of the Galaxy of 7.7 x 10(11) M-circle dot and estimate that the mass is likely to be >= 1.2 x 10(12) M-circle dot. Although most dynamical analyses yield measurements consistent with these results, several recent studies have advocated for a total mass well below 10(12) M-circle dot. We reject such low-mass estimates because they imply a Galactic baryon matter fraction significantly above the universal value. Convergence between dynamical mass estimates and those based on the baryonic mass is an important milestone in our understanding of galaxies.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/623207 |
Date | 01 March 2017 |
Creators | Zaritsky, Dennis, Courtois, Helene |
Contributors | Univ Arizona, Steward Observ |
Publisher | OXFORD UNIV PRESS |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society |
Relation | https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw2922 |
Page generated in 0.0021 seconds