This diploma thesis focuses on the automated diagnosis of hypokinetic dysarthria in the multilingual speech corpus, which is a motor speech disorder that occurs in patients with neurodegenerative diseases such as Parkinson’s disease. The automatic speech recognition approach to diagnosis is based on the acoustic analysis of speech and subsequent use of mathematical models. The popularity of this method is on the rise due to its objectivity and the possibility of working simultaneously on different languages. The aim of this work is to find out which acoustic parameters have high discriminative power and are universal for multiple languages. To achieve this, a statistical analysis of parameterized speech tasks and subsequent modelling by machine learning methods was used. The analyses were performed for Czech, American English, Hungarian and all languages together. It was found that only some parameters enable the diagnosis of the hypokinetic disorder and are, at the same time, universal for multiple languages. The relF2SD parameter shows the best results, followed by the NST parameter. When classifying speakers of all the languages together, the model achieves accuracy of 59 % and sensitivity of 72 %.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413254 |
Date | January 2020 |
Creators | Kováč, Daniel |
Contributors | Zvončák, Vojtěch, Mekyska, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds