Return to search

PSO-based Fractal Image Compression and Active Contour Model

In this dissertation, particle swarm optimization (PSO) is utilized for fractal image compression (FIC) and active contour model (ACM). The dissertation is divided into two parts. The first part is concerned with the FIC and the second part with ACM. FIC is promising both theoretically and practically for image compression. However, since the encoding speed of the traditional full search method is very time-consuming, FIC with full search is unsuitable for real-time applications. In this dissertation, several novel PSO-based approaches incorporating the edge property of the image blocks are proposed to speedup the encoder and preserve the image quality. Instead of the full search, a direction map is built according to the edge type of the image blocks, which directs the particles in the swarm to regions consisting of candidates of higher similarity. Therefore, the searching space is reduced and the speedup can be achieved. Also, since the strategy is performed according to the edge property, better visual effect can be preserved. Experimental results show that the visual-based particle swarm optimization speeds up the encoder 125 times faster with only 0.89 dB decay of image quality in comparison to the full search method.
The second part of the dissertation is concerned with the active contour model for automatic object boundary identification. In the traditional methods for ACM, each control point searches its new position in a small nearby window. Consequently, the boundary concavities cannot be searched accurately. Some improvements have been made in the past to enlarge the searching space, yet they are still time-consuming. To overcome these drawbacks, a novel multi-population PSO technique is adopted in this dissertation to enhance the concavity searching capability and reduce the search time but in a larger searching window. In the proposed scheme, to each control point in the contour there is a corresponding swarm of particles with the best swarm particle as the new control point. The proposed optimizer not only inherits the spirit of the original PSO in each swarm but also shares information of the surrounding swarms. Experimental results demonstrate that the proposed method can improve the search of object concavities without extra computation time.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0723108-165137
Date23 July 2008
CreatorsTseng, Chun-chieh
ContributorsRey-Chue Hwang, Jeng-Yih Juang, Tsu-Tian Lee, Jer-Guang Hsieh, Wen-Shiung Chen, Jyh-Horng Jeng
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0723108-165137
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0015 seconds