Return to search

Improved particle Swarm Optimisation algorithms / Des algorithmes améliorés de particules Swarm Optimisation

Optimisation Swarm Particle (PSO) est basé sur une métaphore de l'interaction sociale […] en ajustant les trajectoires des vecteurs individuels, appelés «particules» conceptualisées comme des points se déplaçant dans un espace multidimensionnel. Le poids aléatoire des paramètres de contrôle est utilisé pour provoquer les particules à aller stochastiquement vers une région ayant plus de succès dans un espace tridimensionnel. Les particules itératives ajustent leur vitesse et leur direction en fonction de leurs personnels et des meilleures positions dans l'essaim. PSO a été appliquée avec succès pour optimiser une large gamme de problèmes. Cependant, les algorithmes standard PSO sont facilement piégés dans les points locaux suboptimaux lorsqu'il est appliqué à des problèmes avec de nombreux extrema locaux ou avec des contraintes. Cette thèse présente plusieurs algorithmes / techniques pour améliorer la capacité de l'OPS recherche mondiale: 1) Deux nouveaux algorithmes chaotiques de particules essaim d'optimisation, d'avoir une chaotiques Hopfield Neural Network (HNN) la structure, sont proposées. L'utilisation d'un système chaotique pour déterminer les poids des particules aide des algorithmes OSP pour échapper à des extrema locaux et de trouver l'optimum global. 2) Pour les algorithmes existants OSP, la relation et l'influence compter que sur les composants correspondants dimensions de l'essaim de particules. Pour montrer la relation intérieure entre les différentes composantes d'une particule, les réseaux de neurones peuvent être utilisés pour modéliser les projections d'ordre du problème d'optimisation, et une optimisation des intérieurs entièrement connecté essaim de particules est proposé à cet effet. 3) En raison de la complexité des contraintes, une solution déterministe générale est souvent difficile à trouver. Par conséquent, une particule détendue contrainte optimisation par essaim algorithme est proposé. Cette méthode améliore la capacité de recherche de l'OSP. 4) Pour améliorer les performances de l'optimisation par essaim de particules, une méthode adaptative de particules essaim d'optimisation basée sur les tests d'hypothèses sont proposées. Cette méthode applique un test d'hypothèse pour déterminer si le piège des particules dans un minimum local ou non. 5) Afin de renforcer la capacité du MPSO de recherche globale, une approche adaptative multi-objectif l'optimisation par essaim de particules (MOPSO) est proposé. Les résultats de simulation et d'analyse confirment l'efficacité des algorithmes proposés / techniques par rapport à l'autre état d'algorithmes / Particle Swarm Optimisation (PSO) is based on a metaphor of social interaction such as birds flocking or fish schooling to search a space by adjusting the trajectories of individual vectors, called “particles” conceptualized as moving points in a multidimensional space. The random weights of the control parameters are used to cause the particles to stochastically move towards a successful region in a higher dimensional space. Particles iteratively adjust their speed and direction based on their personal best positions and the best position in the swarm. PSO has been successfully applied to optimise a wide range of problems. However, the standard PSO algorithms are easily trapped in local suboptimal points when applied to problems with many local extrema or with constraints. This thesis presents several algorithms/techniques to improve the PSO's global search ability: 1) Two new chaotic particle swarm optimisation algorithms, having a chaotic Hopfield Neural Network (HNN) structure, are proposed. Using a chaotic system to determine particle weights helps the PSO algoritms to escape from local extrema and to find the global optimum. 2) For the existing PSO algorithms, the relationship and influence only rely on the corresponding dimensional components of the particle swarm. To show the inner relationship among the different components of one particle, neural networks can be used to model the characteristcs of the optimisation problem, and an inner fully connected particle swarm optimisation is proposed for this purpose. 3) Due to the complexity of constraints, a general deterministic solution is often hard to find. Therefore, a relaxed constraint particle swarm optimisation algorithm is proposed. This method improves the PSO's search ability. 4) To improve the performance of particle swarm optimisation, an adaptive particle swarm optimisation method based on hypothesis testing is proposed. This method applies a hypothesis test to determine whether the particles trap into a local minimum or not. 5) To enhance the MPSO's global search ability, an adaptive multi-objective particle swarm optimisation (MOPSO) is proposed. Simulation and analytical results confirm the efficiency of the proposed algorithms/techniques when compared to the other state of the art algorithms

Identiferoai:union.ndltd.org:theses.fr/2011PEST1049
Date14 December 2011
CreatorsSun, Yanxia
ContributorsParis Est, Tshwane University of Technology, Siarry, Patrick
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds