Return to search

Development, assessment and application of bioinformatics tools for the extraction of pathways from metabolic networks

Genes can be associated in numerous ways, e.g. by co-expression in micro-arrays, co-regulation in operons and regulons or co-localization on the genome. Association of genes often indicates that they contribute to a common biological function, such as a pathway. The aim of this thesis is to predict metabolic pathways from associated enzyme-coding genes. The prediction approach developed in this work consists of two steps: First, the reactions are obtained that are carried out by the enzymes coded by the genes. Second, the gaps between these seed reactions are filled with intermediate compounds and reactions. In order to select these intermediates, metabolic data is needed. This work made use of metabolic data collected from the two major metabolic databases, KEGG and MetaCyc. The metabolic data is represented as a network (or graph) consisting of reaction nodes and compound nodes. Interme- diate compounds and reactions are then predicted by connecting the seed reactions obtained from the query genes in this metabolic network using a graph algorithm.
In large metabolic networks, there are numerous ways to connect the seed reactions. The main problem of the graph-based prediction approach is to differentiate biochemically valid connections from others. Metabolic networks contain hub compounds, which are involved in a large number of reactions, such as ATP, NADPH, H2O or CO2. When a graph algorithm traverses the metabolic network via these hub compounds, the resulting metabolic pathway is often biochemically invalid.
In the first step of the thesis, an already existing approach to predict pathways from two seeds was improved. In the previous approach, the metabolic network was weighted to penalize hub compounds and an extensive evaluation was performed, which showed that the weighted network yielded higher prediction accuracies than either a raw or filtered network (where hub compounds are removed). In the improved approach, hub compounds are avoided using reaction-specific side/main compound an- notations from KEGG RPAIR. As an evaluation showed, this approach in combination with weights increases prediction accuracy with respect to the weighted, filtered and raw network.
In the second step of the thesis, path finding between two seeds was extended to pathway prediction given multiple seeds. Several multiple-seed pathay prediction approaches were evaluated, namely three Steiner tree solving heuristics and a random-walk based algorithm called kWalks. The evaluation showed that a combination of kWalks with a Steiner tree heuristic applied to a weighted graph yielded the highest prediction accuracy.
Finally, the best perfoming algorithm was applied to a microarray data set, which measured gene expression in S. cerevisiae cells growing on 21 different compounds as sole nitrogen source. For 20 nitrogen sources, gene groups were obtained that were significantly over-expressed or suppressed with respect to urea as reference nitrogen source. For each of these 40 gene groups, a metabolic pathway was predicted that represents the part of metabolism up- or down-regulated in the presence of the investigated nitrogen source.
The graph-based prediction of pathways is not restricted to metabolic networks. It may be applied to any biological network and to any data set yielding groups of associated genes, enzymes or compounds. Thus, multiple-end pathway prediction can serve to interpret various high-throughput data sets.

Identiferoai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-11172010-110850
Date12 February 2010
CreatorsFaust, Karoline
ContributorsDupont, Pierre, Médigue, Claudine, Lenaerts, Tom, van Helden, Jacques, André, Bruno, Pays, Etienne, Leo, Oberdan, Marini, Anna Maria
PublisherUniversite Libre de Bruxelles
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-11172010-110850/
Rightsmixed, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0027 seconds