Return to search

Role of transcription factor Pax6 in the development of the thalamocortical tract

During development the nuclei of the thalamus form reciprocal connections with specific regions within the cortex. These connections give rise to the thalamocortical tract. The processes by which axons of the thalamocortical tract are guided to their target regions are poorly understood. It has been shown that diffusible or membrane bound factors can have a chemoattractive or chemorepulsive effect on the tip or growth cone of the axon. Thalamocortical axons may also be guided along ‘pioneer’ axon populations that form a scaffold along which axons may grow. The transcription factor Pax6 has been shown to have a role in a variety of developmental processes such as neuronal patterning, proliferation, migration and axon guidance. It is known that Pax6 is involved in the development of the thalamocortical tract but its exact role is unknown. To explore the role that Pax6 plays in the development of the thalamocortical tract I have used two different mouse models, the small eye (Pax6Sey/Sey) mouse which lacks functional Pax6, and a conditional Pax6 knock-out (Pax6cKO) mouse made using a Gsh2 Cre line that specifically reduces Pax6 expression in the ventral telencephalon and prethalamus. Using the Pax6Sey/Sey mouse I show that thalamocortical axons do not enter the ventral telencephalon in the absence of Pax6 and that a small number of axons incorrectly enter the hypothalamus. In addition axons found within the ventral telencephalon of the mutant do not originate from the thalamus but instead originate from cells within the ventral telencephalon itself. I have found that the expression of guidance molecule Robo2 is reduced in the Pax6Sey/Sey mouse, which may explain why thalamocortical axons enter the hypothalamus. When Pax6 expression is reduced at the prethalamus and ventral telencephalon using the Pax6cKO mouse I show that the majority of thalamocortical axons reach the cortex normally but some axons become disorganized within the thalamus. Pioneer axons which emanate from the prethalamus normally guide thalamocortical axons through the diencephalon but in the Pax6cKO I report that these axons are reduced which may explain the disorganization of thalamocortical axons within the thalamus. Taken together the data from these two models demonstrate that for the thalamocortical tract to form normally Pax6 expression is required in both the cells of the thalamus and in cells that lie along the route of the tract. In addition I provide evidence that Pax6 may influence axon guidance by controlling the expression of guidance molecules and the development of pioneer axon tracts.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:586441
Date January 2013
CreatorsClegg, James Matthew
ContributorsPrice, David; Manuel, Martine
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/8099

Page generated in 0.0021 seconds