In the setting of Riemannian manifolds with nonnegative Ricci curvature, we provide geometric inequalities as consequences of the Monotonicity Formulas holding along the flow of the level sets of the p-capacitary potential. The work is divided into three parts. (1) In the first part, we describe the asymptotic behaviour of the p-capactitary potential in a natural class of Riemannian manifolds. (2) The second part is devoted to the proof of our Monotonicity-Rigidity Theorems. (3) In the last part, we apply the Monotonicity Theorems to obtain geometric inequalities, focusing on the Extended Minkowski Inequality.
Identifer | oai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/346959 |
Date | 09 June 2022 |
Creators | Benatti, Luca |
Contributors | Benatti, Luca, Mazzieri, Lorenzo |
Publisher | Università degli studi di Trento, place:TRENTO |
Source Sets | Università di Trento |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/openAccess |
Relation | firstpage:1, lastpage:145, numberofpages:145 |
Page generated in 0.002 seconds