Dans cette thèse nous étudierons plusieurs problèmes de la théorie du contrôle portant sur des modèles non-linéaires issus de la mécanique des fluides. Dans le chapitre un, nous étudions l'équation de Camassa-Holm sur un intervalle compact de R. Après avoir introduit de bonnes conditions aux bords et une notion de solution faible, nous montrons un théorème d'existence et un théorème d'unicité fort-faible pour le problème mixte. Dans une seconde partie nous fournissons une loi de retour pour les données aux bords qui nous permet de stabiliser asymptotiquement l'état stationnaire naturel de l'équation.\par Dans le chapitre deux, nous étudions le problème de la contrôlabilité exacte d'une loi de conservation scalaire à flux convexe, posée sur un intervalle compact et dans le cadre des solutions entropiques. On fournit des conditions suffisantes sur des fonctions de BV pour qu'elles soient atteignables en temps arbitraire depuis n'importe quelle donnée initiale. On contrôle l'équation via les données aux bords et aussi grâce à un terme source agissant uniformément en espace.\par Enfin le chapitre trois est consacré au problème de la stabilisation asymptotique des états stationnaires constants d'une loi de conservation scalaire à flux convexe, posée sur un intervalle compact et dans le cadre des solutions entropiques. On contrôle à nouveau l'équation via les données aux bords et un terme source agissant uniformément en espace. Nous fournissons deux lois de retour stationnaires (suivant que l'état à stabiliser est de vitesse critique ou non) qui nous permettent de montrer la stabilisation asymptotique globale.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00872271 |
Date | 09 December 2011 |
Creators | Vincent, Perrollaz |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds