Return to search

Adhäsions- und Degradationsverhalten an der Grenzfläche zwischen Titan und Polyetheretherketon / Adhesion and degradation mechanism at the interface between titanium and polyetheretherketone

In dieser Arbeit wurde die Grenzfläche zwischen Ti-3Al-2,5V und CF/PEEK in thermoplastischen Ti-CF/PEEK-Laminaten untersucht. Vergleichende Untersuchungen von mechanischen, chemischen, chemisch-physikalischen und physikalischen Oberflächenvorbehandlungen im Zugscherversuch haben gezeigt, dass sich durch die Vorbehandlung mit einem Nd:YAG-Laser ein stabiles und feuchtigkeitsbeständiges Grenzflächensystem erzeugen lässt.
Ti-CF/PEEK-Laminate wurden bruchmechanisch im Mixed-Mode-Bending-Versuch sowohl bei reiner als auch bei überlagerter Mode I- und Mode II-Belastung geprüft. Die Versagensmechanismen wurden an den Bruchflächen der Mixed-Mode-Bending-Proben und an den Bruchflächen der Zugscherproben mittels mikroskopischer und spektroskopischer Methoden bestimmt. Verschiedene Analyseverfahren wurden eingesetzt, um Ti-3Al-2,5V-Oberflächen vor und nach der Laservorbehandlung, um laserbehandelte und wärmebehandelte Ti-3Al-2,5V-Oberflächen und um das Grenzflächensystem im Verbund zwischen Ti-3Al-2,5V und CF/PEEK vor und nach Alterung in 80°C warmem Wasser zu analysieren. Dabei wurden sowohl die grenzflächennahen Phasen im Ti-3Al-2,5V als auch die grenzflächennahen Phasen im PEEK berücksichtigt. Die Untersuchgen zeigen, dass sich nicht alle eingesetzten Analyseverfahren zur Charakterisierung eignen und dass nicht jedes Analyseverfahren eindeutig interpretierbare Ergebnisse liefert. Die eingesetzten Analyseverfahren werden in dieser Arbeit miteinander verglichen und in Bezug zu ihrer Einsetzbarkeit und zu ihren Einsatzgrenzen bewertet.
Titan-PEEK-Verbindungen zeigen je nach eingesetzter Vorbehandlungsmethode unterschiedliche Adhäsions-, Versagens- und Alterungsmechanismen. Die Ergebnisse aus den Untersuchungen der Verbindung zwischen PEEK und laserbehandeltem Ti-3Al-2,5V zeigen, dass neben mechanischer Adhäsion auf Mikro- und Nanoebene weitere Adhäsionsmechanismen in Frage kommen. Die Aluminiumanreicherung an der Oberfläche und die erhöhte Reaktivität durch mikro- und nanostrukturierte Oberflächen können chemische Wechselwirkungen zwischen PEEK und laserbehandeltem Ti-3Al-2,5V begünstigen.
Die Untersuchungen geben ebenfalls Hinweise darauf, dass die Verbundeigenschaften im Titan-PEEK-Verbund durch die Morphologie von PEEK beeinflusst wird. An der Titan-PEEK-Grenzfläche wurde Grenzflächenkristallisation nachgewiesen, von der bekannt ist, dass sie die Verbundeigenschaften von faserverstärkten Kunststoffen senkrecht zur Faserorientierung verbessern. Nicht nachgewiesen, aber durchaus möglich ist, dass sich mechanisch verklammertes PEEK in der porösen Oxidschicht aufgrund thermischer Eigenspannungen während der Abkühlung orientiert und die mechanischen Eigenschaften an der Grenzfläche in Analogie zu selbst verstärkten Polymeren verbessert. Dieser Ansatz kann eine Erklärung dafür sein, warum im MMB-Versuch nicht nur hohe kritische Energiefreisetzungsraten bei reiner Mode II-Belastung, sondern vor allem auch bei reiner Mode I-Belastung beobachtet wird. Die auf PEEK basierenden Mechanismen sind materialspezifisch und nicht auf chemisch aushärtbare Klebstoffe anwendbar.
Der Einfluss der Größenordnung von Oberflächenstrukturen auf die Langzeit- und Feuchtigkeitsbeständigkeit, der bereits aus der Literatur bekannt ist, wird in dieser Arbeit bestätigt. Mit mikrostrukturierten Oberflächen, die mittels Sandstrahlen erzeugt werden, lassen sich im Gegensatz zu nanostrukturierten Oberflächen, die mittels Laserbehandlung erzeugt werden, keine langzeit- und feuchtigkeitsbeständige Verbindungen zwischen PEEK und Ti-3Al-2,5V erzeugen. In Titan-PEEK-Verbindungen ist nicht nur die Haftung zwischen PEEK und Ti-3Al-2,5V entscheidend, sondern auch die Stabilität der Phasen im Grenzflächensystem, wie am Beispiel der Verbindung zwischen anodisiertem Ti-3Al-2,5V und PEEK gezeigt wird. Geringe Verbundfestigkeiten können somit als Folge thermischer Alterung während der Verbundherstellung verursacht werden, bei der die Oxidschicht durch Sauerstoffdiffusion geschädigt wird. Thermische Eigenspannungen, die sowohl zur Rissbildung im Oxid als auch im martensitischen Bereich führen, und ungenügende Verbundqualität, die beispielsweise durch eingeschlossene Luft bei großflächigen Klebungen entsteht, begünstigen die Alterung in hydrothermischer Umgebung.
Zum Verständnis von Adhäsions- und Alterungsmechanismen an der Grenzfläche zwischen Ti-3Al-2,5V und PEEK trägt nicht nur das Eigenschaftsbild der Metall-, Oxid- und Polymerphasen im Grenzflächensystem bei, sondern auch Änderungen in den einzelnen grenzflächennahen Phasen während Oberflächenvorbehandlung und der Konsolidierung. Bei der Verwendung von thermoplastischen Klebstoffen sind im Gegensatz zu Reaktionsklebstoffen besonders die vergleichsweise hohen Konsolidierungstemperaturen, die Kristallisationskinetik und die Schmelzviskosität zu berücksichtigen. So sollte bereits bei der Oberflächenvorbehandlung die Bildung thermisch unstabiler Oberflächenphasen vermieden werden, da diese während der Herstellung thermisch geschädigt werden können. Der Verbindungsprozess erfordert besonders bei großen Klebeflächen Maßnahmen, um das Phänomen der «eingeschlossenen Luft» zu vermeiden, da sich schlecht infiltrierte Bereiche negativ auf die Alterungsbeständigkeit auswirken. Bei porösen Oberflächenstrukturen auf Nanoskala ist ebenso eine Abstimmung zwischen Porengröße und Schmelzviskosität des Thermoplasten erforderlich, um ausreichende Infiltration des Thermoplasten an porösen Oberflächenstrukturen zu gewährleisten. Die grenzflächennahen Phasen von PEEK wurden erstmals an der Ti-3Al-2,5V-Oberfläche nachgewiesen. Die Einflussfaktoren und die Eigenschaften der grenzflächennahen Phasen von PEEK sind bereits aus Untersuchungen von CF/PEEK-Verbunden bekannt. Die Ergebnisse zeigen großes Potential der Übertragbarkeit auf die Titan-PEEK-Grenzfläche. So kann beispielsweise die PEEK-Morphologie durch gezielte Temperaturführung beim Kleben beeinflusst werden. Die Mechanismen an der Grenzfläche und die daraus resultierenden Verbundeigenschaften, die sich an der Grenzfläche zwischen Ti-3Al-2,5V und PEEK ergeben, zeigen großes Potential. Die Erkenntnisse aus dieser Arbeit zur Herstellung von Ti-PEEK-Grenzflächen mit hoher Verbundfestigkeit und Alterungsbeständigkeit zeigen ebenfalls großes Potential der Übertragbarkeit auf andere Metall-Thermoplast-Verbindungen. / The interface between titanium Ti-3Al-2,5V and Polyetheretherketone (PEEK) in Ti-CF/PEEK laminates are investigated. Comparative investigations of mechanical, chemical, chemo-physical and physical surface pre-treatments evidenced that surface pre-treatment by a pulsed Nd:YAG laser (physical pre-treatment) offers both good adhesion and superior moisture resistance of the titanium-PEEK interface.
The titanium-PEEK interface modified by laser pre-treatment is characterized mechanically and analytical in detail. This investigation takes into account all process steps (surface pre-treatment, bonding, and ageing) as well as all the phases and interfaces in the titanium-PEEK system (i.e. titanium, oxide, and also PEEK). The delamination behavior is investigated mechanically with the mixed mode bending experiment (MMB). The MMB loading was represented by a superposition of simple mode I and mode II loadings. Based on MMB fracture surface analysis, a failure and damaging mechanism could be assumed. The analytical methods used in this investigation are a cryo-fracture, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), secondary electron microscopy (SEM, EDX, transmission electron microscopy (TEM), analytical TEM (EDX, EFTEM, EELS), adsorption/desorption experiments (Krypton-BET), Laser scanning microscopy (LSM), contact angle measurements, and Raman microscopy.
The adhesion and degradation mechanism observed at the titanium-PEEK interface strongly depends on the applied surface pre-treatment. The interface properties between pretreated Ti-3Al-2.5V and PEEK show an influence of the morphology of PEEK. For the first time, interfacial crystallization of PEEK at the Ti-3Al-2.5V surface was confirmed by experimental results. Interfacial crystallization is known for its strengthening effect perpendicular to C-fibers within CF/PEEK laminates and implies a strong interaction between PEEK and the oxide layer on the Ti-3Al-2.5V joining partner.
Moreover, the investigations of the interface between laser treated Ti-3Al-2.5V and PEEK indicate that adhesion is not only due to mechanical interlocking on micro- and nano-scale. Chemical interactions between the polymer and the joining surface seem be promoted byan increased surface reactivity due to the high surface area structures on micro- and nano-scale. In addition, an aluminum-enrichment was detected with TEM at the treated surface that may play a role in the bonding.
During the cooling phase of the consolidation of the thermoplastic, thermal stress arise at the interface due to suppressed expansion and contraction of the individual components. It can be assumed that PEEK, which is interlocked within the oxide pores, reduces the stress by relaxation processes. Relaxation induced re-orientation of the molecule structure is able strengthen the interface as it is known from self-reinforced polymers. This assumption could explain the interface behavior characterized by mode I and mode II loadings. High energy release rates observed at mode I loadings could be traced back to the re-orientated molecule structure which is equal to the direction of mode I loading. This mechanism is material specific and can be applied only to cure-free thermoplastics.
The long-term durability is enhanced significantly when of surface structures on nano-scale are formed by the pretreatment. This result is in good agreement with the literature. However, during the bonding process not only on the formation of adhesion between PEEK and Ti-3Al-2.5V is important but also the stability of the interfacial phases within the Ti-PEEK interfacial system as shown on the interface properties between anodized Ti-3Al-2.5V. Anodized oxide phases, for example,
which degrade during the bonding by oxidation diffusion, were found to result in low interfacial strength and low long-term durability.
Aging in hydro-thermal environment are enhanced by further factors. Residual stress which arises during the bonding process leads to cracks within the oxide and within martensitic region. Entrapped air which especially develop when large areas are bonded enhance water diffusion along the interface and hydrothermal aging.
A basic understanding of the titanium-PEEK system requires that all phases and interfaces in the titanium-PEEK system as well as all process steps are taken into account. Although the polymer will be neglected in most cases this investigation reveals that even the polymer morphology significantly influences the interface properties.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-221238
Date25 July 2017
CreatorsSchulze, Karola
ContributorsTU Chemnitz, Fakultät für Maschinenbau, Universitätsverlag der Technischen Universität Chemnitz,, Dr.-Ing. Bernhard Wielage, Dr.-Ing. Joachim Hausmann, Dr. rer. Nat. Jan Haubrich, Dr.-Ing. Bernhard Wielage, Dr.-Ing. Joachim Hausmann, Dr.-Ing. Michael Gehde
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip

Page generated in 0.0044 seconds