Per- and polyfluoroalkyl substances (PFASs) are persistent organic pollutants used in industrial applications and are globally distributed in the environment. A group of PFASs that are difficult to measure with today’s method are perfluoroalkyl acid precursors (PFAA precursors) that, when degraded, serves as indirect sources of PFAAs. This study has optimized a previously developed method for quantification of PFAA precursors in soil; through total oxidizable precursor assay (TOP assay) under alkaline conditions, to be applicable on sewage sludge. To achieve and maintain an alkaline environment during the entire oxidative treatment, several parameters were tested: concentrations of NaOH, persulfate and sample; additional clean-up with graphitized non-porous carbon and reaction time. Solid phase extraction-weak anion exchange (SPE-WAX) was used for clean-up and separation of analytes, and LC-MS/MS was used for quantification. The optimal conditions with the highest levels of PFAAs detected was obtained with 1.33 M NaOH, 60 mM persulfate, 3.57 g/L sludge with a reaction time of 6 hours. The use of graphitized non-porous carbon reduced matrix effects on oxidative conversion resulting in a higher pH as well as a higher degree of oxidation, but with some analyte loss.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-71046 |
Date | January 2018 |
Creators | Söderlund, Lydia |
Publisher | Örebro universitet, Institutionen för naturvetenskap och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds