Return to search

Effects of Perfluoroalkyl Compounds (PFCs) on the mRNA Expression Levels of Thyroid Hormone-responsive Genes in Primary Cultures of Avian Neuronal Cells

There is a growing interest in assessing the neurotoxic potential and endocrine disrupting properties of perfluoroalkyl compounds (PFCs). Several studies have reported in vitro and in vivo effects related to neuronal development, neural cell differentiation, pre- and post- natal development and behaviour. PFC exposure altered hormone levels (e.g. thyroid hormone, estrogen, and testosterone) and the expression of hormone-responsive genes in mammalian and aquatic species. Hormone-mediated events are critical in central nervous system development and function, especially those controlled by thyroid hormones (THs).

The studies presented in this thesis are the first to assess the effects of PFCs on primary cultures of neuronal cells in two avian species; the domestic chicken (Gallus domesticus) and herring gull (Larus argentatus). The following TH-responsive genes were examined using real-time RT-PCR: type II iodothyronine 5’-deiodinase (D2), D3, transthyretin (TTR), neurogranin (RC3), octamer motif binding factor (Oct-1), and myelin basic protein (MBP). Several PFCs were shown to alter mRNA expression levels of genes associated with the TH pathway in avian neuronal cells. It was determined that short-chained PFCs (<8 carbons) altered the expression of TH-responsive genes to a greater extent than long-chained PFCs (≥8 carbons). Although several significant changes in mRNA expression were observed in TH-responsive genes following PFC exposure in chicken embryonic neuronal (CEN) cells (Chapter 2), there were fewer changes in herring gull embryonic neuronal (HGEN) cells (Chapter 3). The mRNA levels of D2, D3, TTR, and RC3 were altered following treatment with several short-chained PFCs in CEN cells. Oct-1 and RC3 expression were induced following treatment with several short-chained PFCs in HGEN cells. These studies are the first to report that PFC exposure alters mRNA expression in primary cultures of avian neuronal cells and provide insight into the possible mechanisms of action of PFCs in the avian brain.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/19791
Date18 February 2011
CreatorsVongphachan, Viengtha
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0022 seconds