Return to search

Nanonetworks as Innovative Platforms for Therapeutic Solubilization and Delivery

PHARMACOLOGY
Nanonetworks as Innovative Platforms for Therapeutic Solubilization and Delivery
David Michael Stevens
Dissertation under the direction of Professor Eva M. Harth
Solubility remains the biggest obstacle in the development of new therapeutics and is the primary cause for clinical failure of promising drugs. The high lipophilicity of many chemotherapeutics and peptides imposes a major challenge for systemic administration and drug efficacy. Recent interest of pharmaceutical companies to apply nanoformulations stems from the interest to improve solubility, specificity, and efficacy for current, off-patent, and shelved drugs rather than creating new therapies. Numerous approaches have been investigated including poly(lactic-co-glycolic acid) (PLGA) formulations, lipid-based micelles, and pegylation of proteins, but these efforts often fall short of expectations due to rapid drug release, the use of non-degradable materials, and accumulation and toxicity in the liver. To overcome these obstacles, practical approaches have been developed for the formation of biodegradable nanoparticles and hydrogels via crosslinking reactions. Polyester nanoparticles, or nanosponges, are degradable, biocompatible networks synthesized using developed intermolecular crosslinking chemistries and are capable of encapsulating the therapeutic while enhancing the drugs solubility in aqueous solution, and the crosslinking density of the nanosponge can be adjusted to allow customized drug release rates. The availability of functionalities such as allyl and amine groups on the surface of the particles allows for targeting ligand attachment for targeted drug delivery applications. Having the abilities of organ-specific delivery and adjustable drug release rates allows the tailoring of this drug delivery platform to meet the specific needs of various applications. The same concept of using crosslinking chemistries to form nanosponges can be used to form hydrogel materials under concentrated conditions, and these biodegradable hydrogels are capable of tunable swelling, drug encapsulation, and adjustable drug release rates. Methods to synthesize predictable and defined polymer precursors have been developed which allows for complete customization of the resulting nanosponges and hydrogels that can be used for various applications including cancer, diabetes, and bone healing.
Approved _________________________________________________ Date_________
Eva M. Harth, Ph.D.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-05292014-163531
Date11 June 2014
CreatorsStevens, David Michael
ContributorsHeidi E. Hamm, Craig W. Lindsley, Eva M. Harth, Joey V. Barnett, W. Scott Akers
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-05292014-163531/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0997 seconds