Return to search

Discovery of a novel lipoxygenase pathway in skin

Lipoxygenase (LOX) are non-heme iron dioxygenases that form fatty acid hydroperoxides used in membrane remodeling and cell signaling. Mammalian epidermal LOX type 3 (eLOX3) is distinctive in totally lacking this typical oxygenase activity. Surprisingly, genetic evidence has linked mutations in either eLOX3 or a co-localizing enzyme, 12R-LOX, to an inherited skin disease, non-bullous congenital ichthyosiform erythroderma (NCIE), in which there is a defect in the normal skin permeability barrier (Hum. Mol. Gen. 11, 107-113). Here I identify a logical link of the biochemistry to the genetics. eLOX3 functions as a hydroperoxide isomerase utilizing the product of 12R-LOX, 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE), as the preferred substrate. Using HPLC, GC-MS, NMR and CD spectroscopy, I demonstrated that eLOX3 converts 12R-HPETE to a specific epoxyalcohol, 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid, and 12-ketoeicosatetraenoic acid in a 2:1 ratio. eLOX3 appears to be unique among LOX enzymes in using the ferrous form of the catalytic iron as the active species, initiating reaction by a one electron reduction of the substrate hydroperoxide and completing reaction by rebound hydroxylation to form the epoxyalcohol product. I analyzed the effect of the naturally occurring mutations identified in NCIE on eLOX3 and 12R-LOX catalytic activity; the lipoxygenase activity of 12R-LOX and the hydroperoxide isomerase activity of eLOX3 were totally eliminated. I further demonstrated that the epoxyalcohol formed by human eLOX3 is metabolized by soluble epoxide hydrolase in human keratinocytes to a single trihydroxy isomer, 8R,11S,12R-trihydroxyeicosa-5Z,9E,14Z-trienoic acid. Both the epoxyalcohol and its triol hydrolysis product were then tested for activity in activation of peroxisome proliferator-activated receptors (PPARs). Each selectively caused induction of PPARalpha-dependent transcription with similar activity to 8S-hydroxyeicosatetraenoic acid, a PPARalpha specific agonist. Because human and mouse express a different spectrum of LOX enzymes in skin, I also investigated the substrate selectivity of mouse eLOX3. It uses the product of mouse 8-LOX as its preferred substrate, a coupling consistent with the specific expression of 8-LOX in mouse skin. My results provide strong biochemical evidence for the existence of a novel LOX pathway. Loss of this pathway may contribute to a reduced differentiation in keratinocytes and pathogenesis of NCIE.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-10182005-094007
Date19 October 2005
CreatorsYu, Zheyong
ContributorsAlan R. Brash, Jason D. Morrow, Richard M. Breyer, H. Alex Brown, Diane S. Keeney
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-10182005-094007/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds