Return to search

Real-time tissue viability assessment using near-infrared light

Despite significant advances in medical imaging technologies, there currently exist no tools to effectively assist healthcare professionals during surgical procedures. In turn, procedures remain subjective and dependent on experience, resulting in avoidable failure and significant quality of care disparities across hospitals.

Optical techniques are gaining popularity in clinical research because they are low cost, non-invasive, portable, and can retrieve both fluorescence and endogenous contrast information, providing physiological information relative to perfusion, oxygenation, metabolism, hydration, and sub-cellular content. Near-infrared (NIR) light is especially well suited for biological tissue and does not cause tissue damage from ionizing radiation or heat.

My dissertation has been focused on developing rapid imaging techniques for mapping endogenous tissue constituents to aid surgical guidance. These techniques allow, for the first time, video-rate quantitative acquisition over a large field of view (> 100 cm2) in widefield and endoscopic implementations. The optical system analysis has been focused on the spatial-frequency domain for its ease of quantitative measurements over large fields of view and for its recent development in real-time acquisition, single snapshot of optical properties (SSOP) imaging.

Using these methods, this dissertation provides novel improvements and implementations to SSOP, including both widefield and endoscopic instrumentations capable of video-rate acquisition of optical properties and sample surface profile maps. In turn, these measures generate profile-corrected maps of hemoglobin concentration that are highly beneficial for perfusion and overall tissue viability. Also utilizing optical property maps, a novel technique for quantitative fluorescence imaging was also demonstrated, showing large improvement over standard and ratiometric methods. To enable real-time feedback, rapid processing algorithms were designed using lookup tables that provide a 100x improvement in processing speed. Finally, these techniques were demonstrated in vivo to investigate their ability for early detection of tissue failure due to ischemia. Both pre-clinical studies show endogenous contrast imaging can provide early measures of future tissue viability.

The goal of this work has been to provide the foundation for real-time imaging systems that provide tissue constituent quantification for tissue viability assessments. / 2018-01-09T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/23379
Date09 July 2017
CreatorsAngelo, Joseph Paul
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.002 seconds