Return to search

Strong-Coupling Quantum Dynamics in a Structured Photonic Band Gap: Enabling On-chip All-optical Computing

In this thesis, we demonstrate a new type of resonant, nonlinear, light-matter interaction facilitated by the unique electromagnetic vacuum density-of-state (DOS) structure of Photonic Band Gap (PBG) materials. Strong light localization inside PBG waveguides allows extremely strong coupling between laser fields and embedded two-level quantum dots (QD). The resulting Mollow splitting is large enough to traverse the precipitous DOS jump created by a waveguide mode cutoff. This allows the QD Bloch vector to sense the non-smoothness of the vacuum structure and evolve in novel ways that are forbidden in free space. These unusual strong-coupling effects are described using a "vacuum structure term" of the Bloch equation, combined with field-dependent relaxation rates experienced by the QD Bloch vector. This leads to alternation between coherent evolution and enhanced relaxation. As a result, dynamic high-contrast switching of QD populations can be realized with a single beam of picosecond pulses. During enhanced relaxation to a slightly inverted steady state at the pulse peak, the Bloch vector rapidly switches from anti-parallel to parallel alignment with the pulse torque vector. This then leads to a highly inverted state through subsequent coherent "adiabatic following" near the pulse tail, providing a robust mechanism for picosecond, femto-Joule all-optical switching. The simultaneous input of a second, weaker (signal) driving beam at a different frequency on top of the stronger (holding) beam enables rich modulation effects and unprecedented coherent control over the QD population. This occurs through resonant coupling of the signal pulse with the Mollow sideband transitions created by the holding pulse, leading to either augmentation or negation of the final QD population achieved by the holding pulse alone. This effect is applied to ultrafast all-optical logic AND, OR and NOT gates in the presence of significant (0.1 THz) nonradiative dephasing and (about 1%) inhomogeneous broadening. Further numerical studies of pulse evolutions inside the proposed devices demonstrate satisfactory population contrast within a PBG waveguide length of about 10 micro meter. These results provide the building blocks for low-power, ultrafast, multi-wavelength channel, on-chip, all-optical computing.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/34791
Date17 December 2012
CreatorsMa, Xun Jr.
ContributorsJohn, Sajeev
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds