Return to search

Elaboration et caractérisation de matériaux nanostructurés à base de silicium comme source de lumière pour la photonique / Elaboration and characterization of silicon nanostructures for the realization of light sources in photonics

Le silicium est reconnu comme étant un mauvais émetteur de lumière à cause de son gap indirect. Diverses stratégies ont été développées pour améliorer son rendement d'émission, le Si constituant le matériau de choix pour la photonique. Ce manuscrit présente l'élaboration et la caractérisation de matériaux originaux à base de silicium afin de proposer des solutions alternatives pour améliorer les propriétés d'émission de lumière du Si. Ce travail est divisé en 4 parties avec tout d'abord une revue de l'état de l'art de l'émission de lumière dans le Si et les bases sur les mécanismes de recombinaison dans le Si. Une seconde partie se concentre sur l'élaboration et l'étude de dispositifs électroluminescents à base de Si comportant un réseau de dislocations enterrées un niveau d'une jonction PN obtenu par collage moléculaire. L'émission de lumière située vers 1,1 et 1,5 µm (1,1 et 0,8 eV) est attribuée à la recombinaison des porteurs sur les états piège induits par des précipités de bore et d'oxyde dans le voisinage de dislocations (E^phonon_Bore vers 1.1eV et Dp~0.8eV) et des états de défauts localisés à l'intersection du réseau carré de dislocations vis (D1~0.8eV). Une troisième partie traite de l'élaboration et des propriétés optique d'ions Er3 + couplés avec des nanostructures de Si dans des films minces de SRO (Silicon-Rich Oxide) obtenus par co-évaporation de SiO et d'Er. Dans cette matrice, l'efficacité d'excitation indirecte de l'Er à 1,5 µm via les nanostructures est démontrée par la mesure de sections efficaces effectives d'excitation de l'Er entre 2x10-16 cm2 et 5x10-15 cm2 en fonction du flux d'excitation et des paramètres d'élaboration. Le principal résultat est la forte diminution avec la température de recuit de la fraction d'ions Er3+ émetteurs susceptible d'être inversée. Des expériences EXAFS révèlent que ce comportement est en corrélation avec l'évolution de l'ordre chimique local autour des atomes d'Er. Dans une dernière partie est présentée l'élaboration de nanostructures de Si de type nanofils cœur-coquille Si/SiO2. Ces structures cœur-coquille sont obtenues par trois méthodes différentes. Les structures obtenues par dépôt d'oxyde sur la surface de nanofils de silicium CVD catalysées avec de l'Au présentent une émission autour de 500 nm efficace à température ambiante due à la recombinaison des porteurs photo-générés au niveau des états de défauts dans la couche d'oxyde et à l'interface Si/SiO2. L'intensité de PL collectée est de plus d'un ordre de grandeur supérieure à celle mesurée sur des films minces de SiO2 similaires déposés sur des substrats de Si. En outre, la passivation des nanofils de Si CVD par un procédé d'oxydation thermique permet de neutraliser les états de surface qui dominent dans de telles structures. La mesure des vitesses de recombinaison de surface semble indiquer que ces nanofils ainsi passivés présentent des propriétés électroniques de volume similaires à celles du Si standard de microélectronique. Enfin, une nouvelle méthode pour l'élaboration in situ de nanofils cœur-coquille Si/SiO2 basée sur l'évaporation d'une source solide SiO avec l'Au et le Cu comme catalyseurs est détaillée. La croissance des fils catalysés par l'Au se produit dans le mode de croissance VLS (Vapor-Liquid-Solid comme en CVD) donnnat des nanofils présentant un cœur de Si cristallin et une coquille amorphe d'oxyde. En revanche, la croissance des nanofils catalysée par le Cu semble se produire préférentiellement à plus basse température en mode VSS (Vapeur-Solide-Solide) expliquant pourquoi ces NFs présentent une forte densité de défauts cristallins dans la cœur de Si contrairement aux fils catalysés Au. / Silicon is known as a poor light emitter due to its indirect band gap. Various strategies have been developed to overcome its poor emission efficiency since it is the material of choice for photonics. In this manuscript are detailed the elaboration and characterization of original silicon-based materials in order to propose alternatives solutions to improve Si light emission properties. This work is divided in 4 parts with a first one describing the state of the art of light emission in Si and the basics of recombination mechanisms in Si. A second part focuses on the elaboration and study of electroluminescent devices based on bulk Si with a buried dislocation network at a PN junction obtained by wafer bonding. The light emission near 1.1 and 1.5 µm (1.1 and 0.8 eV) is attributed to the recombination of carriers on trap states induced by boron and oxide precipitates in the vicinity of dislocations (E^phonon_Bore near 1.1eV and Dp~0.8eV) and defects traps at the intersection of the square network of screw dislocations (D1~0.8eV). In a third part is showed the elaboration and the optical properties of Er3+ ions coupled with Si nanostructures in Si-Rich Silicon Oxide (SRO) thin films obtained by co-evaporation of SiO and Er. We demonstrate the efficient indirect excitation of Er at 1.5 µm with high effective cross sections between 2x10-16 cm2 and 5x10-15 cm2 as a function of the excitation flux and the elaboration parameters. The main result is the drastic decrease of the number of Er3+ emitting ions coupled to Si with the annealing temperature. EXAFS experiments revealed that this behavior is correlated with the evolution of the local chemical order around Er atoms. In a last part is presented the elaboration of Si nanostructures based on core-shell Si/SiO2 nanowires. These core-shell structures are obtained by three different methods. Core-shell nanowires obtained by oxide deposition on the surface of CVD Au-catalyzed Si nanowires exhibit an efficient room temperature emission around 500 nm due to the recombination of photo generated carriers in defects states in the oxide layer and at the Si/SiO2 interface. The collected PL intensity is more than one order of magnitude higher than similar SiO2 thin films deposited on Si substrates. Moreover, the passivation of CVD-growth Si nanowires by a thermal oxidation procedure allows neutralizing the surface states which are predominant in such structures. As a result, the measurement of surface recombination velocities seems to indicate that such passivated nanowires present similar volume electronic properties than standard microelectronic bulk Si. Finally, a new method for the elaboration of in situ core-shell Si/SiO2 nanowires based on the evaporation of a solid SiO source with Au and Cu as catalysts is presented. The Au-catalyzed growth occurs in the VLS mode (Vapor-Liquid-Solid like in CVD-growth) leading to the growth of nanowires with a crystalline Si core surrounded by an amorphous oxide shell. But Cu-catalyzed nanowires growth seems to appear preferentially at lower temperatures in the VSS (Vapour-Solid-Solid) mode explaining why these nanowiress exhibit a high density of crystalline defects in the Si core compared to Au-catalyzed wires.

Identiferoai:union.ndltd.org:theses.fr/2013GRENY006
Date13 March 2013
CreatorsNoé, Pierre-Olivier
ContributorsGrenoble, Calvo, Vincent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds