Return to search

Photocatalytic Carbon Dioxide Reduction with Zinc(II) Dipyrrin Photosensitizers and Iron Catalyst

Much of the energy used in the United States and around the globe is obtained from petroleum, natural gas, and coal. Photocatalytic CO2 reduction can be used to transform CO2 to useful fuels and making fossil fuels more renewable. Input of energy is required, and the sun can provide the required energy for this transformation. Photosensitizer, catalyst, and electron donor are required for photocatalytic CO2 reduction.
Due to lack of earth-abundant sensitizers, zinc dipyrrin complexes were synthesized by previous group members and have been used as photosensitizers in this research. The ground and excited state electrochemical properties of two zinc dipyrrin complexes were determined in polar and nonpolar solvents and the measured potentials were used to match the zinc sensitizers with an energetically appropriate iron porphyrin catalyst and a benzylthiol sacrificial electron donor. Lastly, pure CO2 gas was used as the source of carbon for the reduction of CO2 by photocatalysis with the zinc photosensitizers, iron catalyst and sacrificial electron donor. The products formed in headspace were analyzed by GC

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5225
Date01 May 2020
CreatorsRasheed, Senan
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0011 seconds