Return to search

Electronic absorption of anthracene in supercritical carbon dioxide

There has been much interest in the last five or ten years in supercritical fluid extraction. In addition to the fact that some supercritical fluids may be less harmful to the environment than traditional extraction solvents, claims have been made for the superior extraction capabilities of supercritical fluids. In a few cases concentrations from absorbance measurements in the supercritical have been calculated with absorptivities derived from studies in liquid systems. This study suggests that the molar absorptivity in the supercritical may be quite different from that in a liquid system. The Beer's Law analysis done here was not adaquate to determine the absolute molar absorptivities in the system being examined, anthracene in carbon dioxide. This failure is in large part due, however, to the relative crudeness of the equipment and procedure used. While failing in the quantitative analysis, a use of Beer's Law in a qualitative capacity may be warranted. The analysis does succeed as an indicator of changes in molecular behavior that occur not only between liquid and high-pressure systems but also those, much slighter, that occur between high-pressure liquid and supercritical fluid systems.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277852
Date January 1991
CreatorsBierly, Pierre-Charles, 1952-
ContributorsVemulapalli, G. K.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds