Return to search

Topological superconductivity without proximity effect

The search for a Majorana Fermion has been an area of intense interest in condensed matter research of late. This elusive particle, predicted to exist in 1937, has been sought after for both fundamental and practical reasons. On the fundamental level, no particle to date has been observed to be a Majorana fermion, meanwhile on the practical level a Majorana fermion, if found, would represent a non-abelian anyon and could thus be used to build a quantum computer. The search for a Majorana Fermion has recently shifted to topological superconductivity. Topological superconductors are categorized by the nontrivial winding of their order parameter phase and for this reason are expected to support Majorana Fermions in their vortex cores. Owing to this, the study of topological superconductors has intensified in recent years. Current proposals for a device that may behave as a topological superconductor are based on semiconductor heterostructures, where the spin-orbit coupled bands of a semiconductor are split by a band gap or Zeeman field and superconductivity is induced by proximity to a conventional superconductor. In this setup, topological superconductivity is obtained in the semiconductor layer and the proposed heterostructures typically include two or three layers of different materials. In this thesis we propose a simplification to these types of devices, suggesting a way in which the superconducting layer can be replaced. Part of our proposal includes a model Hamiltonian for these types of systems. This thesis will also develop several different methods to analyze this model Hamiltonian in various different parameter regimes with the ultimate goal of classifying its topology. / Récemment, une région d'intérêt en la recherché de la matière condensée est le recherche pour les "Majorana Fermions". Les physiciens sont fascinés avec cette particule pour des raisons fondamentales et pratiques. Fondamentalement, une particule se comporte comme un Majorana Fermion n'a jamais été trouvée avant. Pratiquement, un Majorana Fermion pourrait être utilisé pour la construction d'un ordinateur quantique. Dans les dernières années, les chercheurs ont commencé à chercher pour des Majorana Fermions dans les supraconducteurs. En particulier, les supraconducteurs topologiques sont crus de supportes les Majorana Fermions dans leur vortex cores et de ce fait des nombreux dispositifs supraconducteurs topologiques ont été proposées. Les propositions récemment sont basées sur les hétérostructures de trois ou deux couches. Dans ces hétérostructures, les bandes d'un semiconducteur avec le couplage de spin-orbit sont séparées par le champ Zeeman d'une couche ferromagnétique (ou un champ appliqué). Après cette, supraconductivité topologique est établie dans la couche de semiconductrice en raison de la proximité d'une couche de supraconducteur ordinaire. Dans cette thèse nous proposons une simplification des dispositifs décrits ci-dessus; nous suggérons un moyen d'enlever la couche de supraconductivité. Nous commençons par proposer un Hamiltonian du cette système et procède à développer des nombreuses méthodes pour analyser cette Hamiltonian avec l'objectif ultime de classifier la topologie de ce système.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.119741
Date January 2013
CreatorsFarrell, Aaron
ContributorsTamar Pereg-Barnea (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Physics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0018 seconds