Return to search

Roles of acid sphingomyelinase in HDL-cholesterol metabolism : lessons from Niemann-Pick disease type I

Studying the biosynthesis, utilization and transport of cholesterol as well as the balance between these pathways may allow us to understand better how to keep its harmful deposition in arteries to a minimum. The goal of my thesis was to identify a novel player, namely the acid sphingomyelinase (ASM), in cellular and plasma cholesterol metabolism by elucidating its regulatory and mechanistic functions. / In our families with high-density lipoprotein-cholesterol (HDL-C) deficiency, one kindred was found to have mutations for the sphingomyelin phosphodiesterase-1 (SMPD-1). This gene codes for lysosomal and secretory ASM and its mutations cause the recessive disorder of Niemann-Pick type A/B (NPD-A/B). My thesis, based on the study of the gene and the protein defect in this family, has led to four important discoveries. First, SMPD-1 mutations are significantly associated with low HDL-C. Second, in order to unveil the mechanism by which ASM contributes to the regulation of HDL-C levels, we investigated the cellular lipid transport in NPD-B fibroblasts. We showed that lysosomal ASM defects lead to co-segregation and co-localization of sphingomyelin (SM) and cholesterol. However, the SM accumulation does not rate-limit the efflux ability of NPD-B cells. Third, we set up the electrospray ionization-mass spectrometry to give an in-depth qualitative and quantitative phospholipid characterization of HDL particles generated from NPD-B. We found that their SM content is significantly elevated. We subsequently provided evidence that the SM content of HDL could be modulated by secretory ASM. Together with other plasma enzymes including lecithin-cholesterol acyl transferase, secretroy ASM appears to regulate the maturation and clearance of HDL-C from the plasma. Finally, we examined the molecular nature of the NPD-B pathophysiology by investigating the structure-function relationship of ASM. We demonstrated that the C-terminal region of ASM plays a critical role in the enzyme conformation that dictates its enzymatic function and secretion. / In summary, our lessons on NPD-B have enabled us to identify ASM as an important player in lipoprotein cholesterol metabolism. Because HDL-C is inversely associated with coronary heart disease, our findings opened a novel therapeutic avenue in the search of preventive strategies against heart disease in our society.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.111886
Date January 2007
CreatorsLee, Karen Ching Yin, 1978-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Division of Experimental Medicine.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002651497, proquestno: AAINR38603, Theses scanned by UMI/ProQuest.

Page generated in 0.0021 seconds