Les réseaux de capteurs sont des réseaux composés de petits objets communicants à faibles ressources (capacité de calcul, mémoire, batterie). Chaque capteur recueille des informations sur son environnement qu’il envoie, par radio, à une entité responsable du traitement de ces données en utilisant les autres capteurs comme relais. Lors d’un tel déploiement, un nombre important de capteurs sont déployés pour s’assurer de la couverture de la zone à surveiller. Ceci implique que chaque capteur maintienne, pour chacun des capteurs avoisinants, des informations dont le maintien est coûteux en terme de communication et de mémoire. L’objectif de cette thèse est de réduire le nombre de ces capteurs avoisinants tout en préservant les fonctionnalités du réseau. L’ensemble des capteurs avoisinants est défini par la portée de communication radio. Le contrôle de topologie vise à réduire l’ensemble des voisins logiques d’un nœud, tandis que le contrôle de portée vise à sélectionner la meilleure portée pour atteindre ces voisins tout en réduisant l’ensemble physique des voisins d’un nœud. Ces travaux se proposent d’étudier, d’un point de vue théorique, les performances obtenues par le contrôle de topologie et le contrôle de puissance. Nous étudions des algorithmes définis dans le cadre de l’utilisation d’un modèle de couche physique idéale, et les adaptons à une utilisation avec un modèle de couche physique réaliste. D’un point de vue pratique, nous avons développé une pile de communication, Goliath, intégrant le contrôle de topologie. Lors de son utilisation, les capteurs utilisent une puissance de transmission inférieure à la puissance maximale sans impacter les performances du réseau. / Wireless Sensor Networks are networks of small communicating devices with constrainted resources. They are usually deployed in risky or difficult to access areas. Each sensor gathers information about its environment and send it to a dedicated entity using other sensors as relays. A large number of sensors may be deployed to ensure the coverage of given area. This large number implies that each sensor has to maintain, for each neighboring sensor, information about its activity for instance. Maintaining this information is memory consuming and implies a huge communication overhead. The aim of this thesis is to reduce the number of neighboring sensor while keeping network services up. The set of neighboring nodes is defined by the communication range. Topology control aims at logically reducing the number of neighboring sensors while power control aims at physically reducing this number. In this work, we theoretically study the bounds that can be obtained by using topology and power control. We study algorithms defined with a ideal physical layer model and show how to adapt them to be used with a realistic physical layer. On a practical side, we developped a communication stack, Goliath, that includes topology and power control. We evaluate the performances of Goliath with and without topology control and power adjustment. When Goliath uses power adjustment, sensors use a transmission power smaller than the maximum power without any impact of the performances of the network.
Identifer | oai:union.ndltd.org:theses.fr/2009LIL10190 |
Date | 15 December 2009 |
Creators | Khadar, Fadila |
Contributors | Lille 1, Simplot-Ryl, David |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0137 seconds