This thesis improves the understanding of the fate and transport of aerosols in North America. Aerosols play an important role climate modification, visibility, human health, and regulatory compliance. Through multiple aircraft-based and ground-based field campaigns, in situ ambient bulk aerosol concentrations will be determined across geographically diverse regions of the United States. By examining aerosol composition - specifically, inorganic ions and water-soluble organic carbon - as they are transported across the Pacific Ocean, we can observe background concentrations that may contribute to aerosol loading observed in many US communities. Furthermore, the aerosol continues to be modified by anthropogenic and biogenic emissions, dry and wet deposition, and secondary formation and transformation as it is transported across the continent. To capture some of these dynamic changes, aerosol will be extensively measured near the east coast of the US and Canada, and results may show significant anthopogenic, biogenic, and secondary transformation. Many results from the Northeastern United States and Southeastern Canada will be presented, and a special case study discussing acid-catalyzed formation of secondary organic aerosol in the region of northern Georgia, US is discussed. Lastly, through laboratory- and field-based instrument development, a commonly-deployed instrument is modified for improved measurement of organic carbon and results are presented herein.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/19750 |
Date | 04 October 2007 |
Creators | Peltier, Richard Edward |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0015 seconds