Le but de cette thèse est d'exploiter efficacement le parallélisme présent dans les applications informatiques séquentielles afin de bénéficier des performances fournies par les multiprocesseurs, en utilisant une nouvelle méthodologie pour la parallélisation automatique des tâches au sein des compilateurs. Les caractéristiques clés de notre approche sont la prise en compte des contraintes de ressources et le caractère statique de l'ordonnancement des tâches. Notre méthodologie contient les techniques nécessaires pour la décomposition des applications en tâches et la génération de code parallèle équivalent, en utilisant une approche générique qui vise différents langages et architectures parallèles. Nous implémentons cette méthodologie dans le compilateur source-à-source PIPS. Cette thèse répond principalement à trois questions. Primo, comme l'extraction du parallélisme de tâches des codes séquentiels est un problème d'ordonnancement, nous concevons et implémentons un algorithme d'ordonnancement efficace, que nous nommons BDSC, pour la détection du parallélisme ; le résultat est un SDG ordonnancé, qui est une nouvelle structure de données de graphe de tâches. Secondo, nous proposons une nouvelle extension générique des représentations intermédiaires séquentielles en des représentations intermédiaires parallèles que nous nommons SPIRE, pour la représentation des codes parallèles. Enfin, nous développons, en utilisant BDSC et SPIRE, un générateur de code que nous intégrons dans PIPS. Ce générateur de code cible les systèmes à mémoire partagée et à mémoire distribuée via des codes OpenMP et MPI générés automatiquement.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00935483 |
Date | 27 November 2013 |
Creators | Khaldi, Dounia |
Publisher | Ecole Nationale Supérieure des Mines de Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds