The Pixel Router was developed at the University of Kentucky with the intent of supporting multi-projector displays by combining the scalability of commercial software solutions with the flexibility of commercial hardware solutions. This custom hardware solution uses a Look Up Table for an arbitrary input to output pixel mapping, but suffers from high memory latencies due to random SDRAM accesses. In order for this device to achieve marketability, the image interpolation method needed improvement as well. The previous design used the nearest neighbor interpolation method, which produces poor looking results but requires the least amount of memory accesses. A cache was implemented to support bilinear interpolation to simultaneously increase the output frame rate and image quality. A number of software simulations were conducted to test and refine the cache design, and these results were verified by testing the implementation on hardware. The frame rate was improved by a factor of 6 versus bilinear interpolation on the previous design, and by as much as 50% versus nearest neighbor on the previous design. The Pixel Router was also certified for FCC conducted and radiated emissions compliance, and potential commercial market areas were explored.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1041 |
Date | 01 January 2010 |
Creators | Dominick, Steven James |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0018 seconds