Nowadays, plastic waste poses one of the greatest risks to the environment. Plastics affect the environment at all stages of their life cycle. Bioplastics have become widely used as a substitute for conventional plastics, without detailed examination of their behavior in real environmental conditions. As a result, it is assumed that they can accumulate in the environment and the question arose as to how to identify them. The main goal of this thesis is to develop a method based on sample pyrolysis that is suitable for the identification and determination of the amount of PLA microplastics in soil and other solid matrices. Three types of soils and sludge were used for analysis. These matrices were spiked to obtain concentration ranges 0,2% - 5,0%. The pyrolysis resulted in evolution of gases with the signals m/z 29, 43 and 44, witch originated from PLA and are suitable for qualitative and quantitative analysis. Analysis of PLA in sludge was more complicated due to similarity of gases evolved from pure matrices. We tested three approaches based on analysis of signal´s peak areas, intensities and temperatures of gas evolution. While the first approach failed, the last two approaches appeared to be promising for qualitative and quantitative analysis of PLA in the sludge. Several methods suitable for qualitative and quantitative analysis of even very small amounts of PLA in soils and sludge have also been designed/developed. These methods were based on analysis of the composition and dynamics of the released gases and the characterisctic degradation temperatures.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413552 |
Date | January 2020 |
Creators | Románeková, Ivana |
Contributors | Mravcová, Ludmila, Kučerík, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds