Return to search

Etude des propriétés physicochimiques des vecteurs nanoparticulaires

Cette thèse rapporte l’étude des propriétés physicochimiques des nanoparticles polymériques et leur impact sur l’interaction avec les cellules vivantes. Nous nous sommes tout spécialement attachés à étudier l’effet des propriétés adhésives et mécaniques des nanoparticules sur leur capacité de pénétration de la membrane cellulaire. Pour ce faire, nous avons tout d’abord utilisé des nanoparticules d’acide polylactique (PLA) fonctionnalisées en surface avec un ligand des sélectines E et P. Le greffage du ligand sur la particule s’est fait par une nouvelle méthode expérimentale garantissant la présence du ligand à la surface de la particule durant toute sa durée de vie. Cette méthode consiste à mélanger un polymère fonctionnalisé avec le ligand avec un autre polymère non fonctionnalisé. La présence du ligand à la surface des nanoparticules formées à partir de ce mélange de polymères a été confirmée par analyse ToF SIMS. Nous avons pu prouver que les particules possédant le ligand greffé à leur surface démontraient une capacité adhésive supérieure à leurs homologues non fonctionnalisés sur des cellules endothéliales HUVEC activées par différentes drogues. De plus, le captage des particules par les cellules HUVEC est modulé par le niveau d’expression des récepteurs selectine E et P et aussi par la quantité de ligand libre. Ces résultats montrent clairement que le greffage du ligand confère aux particules des propriétés adhésives accrues et spécifiques ce qui permet leur usage postérieure comme vecteur pharmaceutique capable de cibler un récepteur particulier à la surface d’une cellule.
Nous avons aussi démontré que l’interaction entre les nanoparticules et la membrane cellulaire peut aussi être contrôlée aussi bien par les propriétés mécaniques de la cellule que de la nanoparticule. Dans une première étape, nous avons mesuré à l’aide de l’appareil de forces de surface l’élasticité de cellules macrophagiques déposées sur différents substrats. En contrôlant l’interaction entre la cellule et le substrat sur lequel elle repose nous avons montré qu’il était possible de modifier à
ii
volonté les propriétés mécaniques cellulaire. Une augmentation de l’élasticité cellulaire s’accompagne d’une augmentation systématique de l’internalisation de nanoparticules de PLA non fonctionnalisées. Ceci suggère un rôle prépondérant des propriétés mécaniques du cortex cellulaire dans le captage des nanoparticules de PLA.
Dans une seconde étape, nous avons étudié l’effet des propriétés mécaniques des nanoparticules sur leur capacité de pénétration cellulaire. Pour ce faire, nous avons synthétisé des particules d’hydrogel dont l’élasticité était contrôlée par le degré d’agent réticulant inclus dans leur formulation. Le contrôle des propriétés mécaniques des nanoparticules a été confirmé par la mesure du module de Young des particules par microscopie de force atomique. L’impact des propriétés mécaniques de ces particules sur leur capacité de pénétration dans les cellules vivantes a été étudié sur des cellules macrophagiques de souris. Les résultats ont montré que la cinétique d’internalisation, la quantité de particules internalisées et le mécanisme d’internalisation dépendent tous du module de Young des nanoparticules. Aucune différence dans le trajet intracellulaire des particules n’a pu être observée malgré le fait que différentes voies d’internalisation aient été observées. Ce dernier résultat peut s’expliquer par le fait que les nanoparticules sont internalisées par plusieurs voie simultanément ce qui facilite leur accumulation dans les organelles digestives intracellulaires. Un modèle simple permettant d’expliquer ces résultats a été proposé et discuté. / This thesis reports the study of physical chemical properties of polymeric nanoparticles and their impact on the interaction with living cells. In particular we endeavoured to study the effect of the adhesive and mechanical properties of the vector on its capacity of penetration of the cellular membrane. With this intention, we firstly used nanoparticules of polylactic acid (PLA) functionalized on their surfaces with a ligand of the selectines E and P receptor. The grafting of the ligand on the particle’s surface was carried out thanks to a new experimental method guaranteeing the presence of the active molecule on the surface of the particle during its whole life cycle. This method consists in mixing a polymer functionalized with the ligand with another polymer not functionalized. The presence of the ligand on the surface of the nanoparticules formed starting from this mixture of polymers was confirmed by ToF SIMS analysis. We could show that the particles having the ligand grafted on their surface exhibit a higher adhesive capacity than their non-functionalized counterpart on endothelial cells HUVEC activated by various drugs. Nanoparticles adhesion on cells membrane was modulated by the level of expression of the receptors selectine E and P and also by the quantity of free ligand. These results show clearly that the functionalized particles possess all the characteristics of a pharmaceutical vector capable of targeting a particular receptor on a cell surface.
The interaction between nanoparticules and cellular membrane can also be controlled by the mechanical properties of the cell as well as of the nanoparticule. To demonstrate it we have measured the elasticity of macrophagic cells deposited on various substrates using the SFA. We have thus showed that it was possible to control the cell mechanical properties at will by controlling the interaction between the cell and the substrate on which it rests. An increase of the cell elasticity is accompanied by an increase of the internalization of non-functionalized PLA nanoparticules. This suggests a major role of cytocortical mechanical properties in the capture of hard PLA particles.
iv
Lastly, we studied the effect of the mechanical properties of the nanoparticules on their cellular penetration capacity. With this intention, we synthesized hydrogel particles whose elasticity was controlled by the degree of crosslinking agent included in their formulation. The control of the mechanical properties of the nanoparticules was confirmed by the measurement of the Young modulus of the particles by AFM. The interaction of these particles with macrophagess showed that the mechanical properties of the particles affect various aspects related to the internalization of the nanoparticles. The internalization kinetics, the quantity of internalized particles and the mechanism of internalization depend all on the Young modulus of the nanoparticules. No differences in the intracellular pathway could be observed in spite of the fact that various pathways of internalization were observed for these nanoparticules. This last result can be explained by the fact that the nanoparticules are internalized by several mechanisms of simultaneously which facilitates their accumulation in intracellular digestive organelles. A simple model explaining these results is proposed and discussed.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/3241
Date06 1900
CreatorsBanquy, Xavier
ContributorsGiasson, Suzanne, Hildgen, Patrice
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.003 seconds