Several areas of knowledge use fractal geometry to help to understand natural objects and phenomena. Irregular self-similar - in which parts resemble the whole - objects may be better understood through fractal dimensions which provide how a property varies with resolution or scale. We present a new approach to calculate fractal dimensions that, instead of the frequently used methods based on covering, seeks geometry information from physical characteristics. Here, we treat the element of a fractal sequence as structures. Imposing constraints on the structures, we build simple harmonic oscillators. The variation of the period of these oscillators with respect to a determined measure of length provides a fractal dimension. This techinique was tested for a family of continuous self-similar plane curves, including the classical Koch triadic. We show that this dynamical dimension may be related to Hausdorff-Besicovitch dimension. With random geometry, the techinique besides providing a fractal dimension, identifies randomness. A new kind of fractal is also presented. The ideia is to use more than one generator in the generation process of a fractal to obtain mixed fractals. / Diversas áreas do conhecimento têm utilizado a geometria fractal para melhor entender muitos objetos e fenômenos naturais. Objetos irregulares com padrão auto-similar onde as partes se assemelham ao todo podem ser melhor compreendidos através de dimensões fractais que fornecem como o valor de uma propriedade varia dependendo da resolução, ou escala, em que o objeto é observado ou medido.
Apresentamos uma nova abordagem para calcular dimensões fractais através de características físicas. Neste trabalho busca-se uma caracterização da dinâmica de estruturas lineares com geometria fractal. Trata-se os elementos de uma sequência geradora de um fractal como estruturas. Osciladores harmônicos simples são construídos com tais estruturas. A variação do período de vibração desses osciladores com uma determinada medida de comprimento nos fornece uma dimensão fractal.
A técnica foi testada para a família de curvas contínuas e auto-similares no plano, onde está incluída a clássica triádica de Koch. Mostramos que essa dimensão dinâmica pode ser relacionada à dimensão de Hausdorff-Besicovitch. Com geometria aleatória, a técnica além de fornecer a dimensão fractal, identifica a aleatoriedade.
Um novo tipo de fractal é apresentado. A idéia é usar mais de um gerador no processo de geração de um fractal para obter os fractais mistos.
Identifer | oai:union.ndltd.org:IBICT/oai:agregador.ibict.br.BDTD_LNCC:oai:lncc.br:43 |
Date | 23 March 2007 |
Creators | Marcelo Miranda Barros |
Contributors | Augusto Cesar Noronha Rodrigues Galeão, Luiz Bevilácqua, Elson Magalhães Toledo, Ricardo Eduardo Musafir |
Publisher | Laboratório Nacional de Computação Científica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do LNCC, instname:Laboratório Nacional de Computação Científica, instacron:LNCC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds