Return to search

Modelagem da produtividade da cultura da cana de açúcar por meio do uso de técnicas de mineração de dados / Modeling sugarcane yield through Data Mining techniques

O entendimento da hierarquia de importância dos fatores que influenciam a produtividade da cana de açúcar pode auxiliar na sua modelagem, contribuindo assim para a otimização do planejamento agrícola das unidades produtoras do setor, bem como no aprimoramento das estimativas de safra. Os objetivos do presente estudo foram a ordenação das variáveis que condicionam a produtividade da cana de açúcar, de acordo com a sua importância, bem como o desenvolvimento de modelos matemáticos de produtividade da cana de açúcar. Para tanto, foram utilizadas três técnicas de mineração de dados nas análises de bancos de dados de usinas de cana de açúcar no estado de São Paulo. Variáveis meteorológicas e de manejo agrícola foram submetidas às análises por meio das técnicas Random Forest, Boosting e Support Vector Machines, e os modelos resultantes foram testados por meio da comparação com dados independentes, utilizando-se o coeficiente de correlação (r), índice de Willmott (d), índice de confiança de Camargo (C), erro absoluto médio (EAM) e raíz quadrada do erro médio (RMSE). Por fim, comparou-se o desempenho dos modelos gerados com as técnicas de mineração de dados com um modelo agrometeorológico, aplicado para os mesmos bancos de dados. Constatou-se que, das variáveis analisadas, o número de cortes foi o fator mais importante em todas as técnicas de mineração de dados. A comparação entre as produtividades estimadas pelos modelos de mineração de dados e as produtividades observadas resultaram em RMSE variando de 19,70 a 20,03 t ha-1 na abordagem mais geral, que engloba todas as regiões do banco de dados. Com isso, o desempenho preditivo foi superior ao modelo agrometeorológico, aplicado no mesmo banco de dados, que obteve RMSE ≈ 70% maior (≈ 34 t ha-1). / The understanding of the hierarchy of the importance of the factors which influence sugarcane yield can subsidize its modeling, thus contributing to the optimization of agricultural planning and crop yield estimates. The objectives of this study were to ordinate the variables which condition the sugarcane yield, according to their relative importance, as well as the development of mathematical models for predicting sugarcane yield. For this, three Data Mining techniques were applied in the analyses of data bases of several sugar mills in the State of São Paulo, Brazil. Meteorological and crop management variables were analyzed through the Data Mining techniques Random Forest, Boosting and Support Vector Machines, and the resulting models were tested through the comparison with an independent data set, using the coefficient of correlation (r), Willmott index (d), confidence index of Camargo (c), mean absolute error (MAE), and root mean square error (RMSE). Finally, the predictive performances of these models were compared with the performance of an agrometeorological model, applied in the same data set. The results allowed to conclude that, within all the variables, the number of cuts was the most important factor considered by all Data Mining models. The comparison between the observed yields and those estimated by the Data Mining techniques resulted in a RMSE ranging between 19,70 to 20,03 t ha-1, in the general method, which considered all regions of the data base. Thus, the predictive performances of the Data Mining algorithms were superior to that of the agrometeorological model, which presented RMSE ≈ 70% higher (≈ 34 t ha-1).

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28092016-154619
Date27 July 2016
CreatorsHammer, Ralph Guenther
ContributorsSentelhas, Paulo Cesar
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds