Return to search

Functional interactions of chromosome segregation factors with the 2 micron plasmid : possible evolutionary link between the plasmid portioning locus and the budding yeast centromere

The 2 micron plasmid of Saccharomyces cerevisiae is a multi-copy circular DNA genome that resides in the nucleus and exhibits nearly chromosome-like stability in host populations. Several host factors are required for equal plasmid segregation during cell division. One of them is cohesin (a multi-subunit protein complex) which mediates sister chromatid cohesion, a crucial mechanism for faithful segregation of replicated chromosomes in eukaryotes. The 2 micron plasmid mimics chromosomes in assembling cohesin at its partitioning locus. Studies on minichromosomes (centromere containing plasmids) reveal that cohesin forms a ring that embraces replicated sister centromeres topologically rather than physically. The functional similarities between chromosome and plasmid segregation prompted us to examine whether the topological mechanism proposed for centromere-mediated replicative cohesion is also true in the case of the plasmid. In the present study, we have characterized the nature and stoichiometry of cohesin's association with the 2 micron plasmid.
Another host factor required for equal plasmid segregation is the CenH3 histone variant Cse4, so far considered to be uniquely associated with centromeric nucleosomes. Cse4 provides an epigenetic landmark at centromeres, and is required for assembly of the kinetochore complex. Surprisingly, Cse4 also interacts with the 2 micron plasmid partitioning locus. We have now functionally characterized this interaction, which can be preserved even in an ectopic, chromosomal context.
The steady state level of Cse4 is highly limiting in yeast due to ubiquitin-mediated proteolysis. Only centromere-associated Cse4 is protected from this regulatory turnover control. We find that, in contrast to the situation with centromeres, association of Cse4 with the 2 micron plasmid is highly sub-stoichiometric but still promotes equal plasmid segregation. We also find that Cse4 induces an unusual right handed DNA writhe at the plasmid partitioning locus, as it does at the centromere. Our findings suggest that the plasmid has designed strategies to minimize the utilization of host factors that are in short supply. They signify the advantage of clustering and group behavior in the evolutionary success of a multi-copy selfish genome. Finally, they also suggest the possible emergence of the yeast centromere and the plasmid partitioning locus from a common ancestral sequence. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-05-2729
Date01 June 2011
CreatorsHuang, Chu-Chun
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.002 seconds