La thèse de doctorat propose la description physiquement cohérente de la limite d'élasticité du matériau sur la base des résultats des expériences associées à des simulations FEM. L'approche théorique est basée sur l'hypothèse de de la limite d'élasticité du matériau de Burzynski. L'hypothèse de l'effort de matériau est dérivée de la définition de l'énergie de fin de course variable de changement de volume et de distorsion. En cas particuliers, les critères comprennent asymétrie de gamme élastique et, sous une forme élargie, il est applicable aux matériaux initialement anisotropes. La thèse a démontré la nécessité de fournir une vue intégrée sur des expériences et des simulations numériques afin d'obtenir la description de l'apparition de la plasticité. Pour atteindre cet objectif, une méthodologie spécifique a été développé- la procédure qui combine des techniques expérimentales avec les simulations numériques pris en charge par la description précise du comportement des matériaux. Comme une partie de l'approche de modélisation numérique, les analyses numériques été effectuées afin de corriger les inexactitudes des résultats expérimentaux présentés. En outre, la Burzynski condition isotrope a été mis en oeuvre dans la méthode des éléments finis via UMAT (user subroutine for ABAQUS). La versatilité du rendement description est illustrée par l'application de matériaux à structure amorphe et différents systèmes de cristaux cubiques: la structure FCC (face centered cubic) et BCC (body centered cubic). A titre d'exemples: - un matériau de type FCC structure - OFHC Cu, Oxygen Free High Conductivity Copper, un matériau de type BCC structure - E335, acier non allié de haute résistance et l'exemple des matériaux amorphes - polycarbonate (PC) et biopolymères (PLA/PBAT). Pour les matériaux les analyses précises ont été effectuées afin d'obtenir des propriétés microstructurales et mécaniques via large gamme de tests de résistance dans diverses conditions de chargement. Le nombre de données exemplaires trouvés dans la littérature des matériaux sensibles à la pression et/ou initialement anisotrope ont été analysés. Il a été prouvé que les critères proposés donnent approximation précise de l'état du début de la plasticité par rapport à d'autres conditions d'usage courant. Les critères résultant semblent être une méthode universelle et largement applicable d'obtenir la description de l'apparition de la plasticité / This thesis proposes physically consistent description of the elastic limit of the material on the basis of the results associated with FEM simulations experiments. The theoretical approach is based on the assumption that the limit of elasticity of material Burzynski. The hypothesis effort material is derived from the definition of the end energy of variable stroke volume change or distortion. In special cases, the criteria include asymmetry elastic range and in an expanded form, it is applicable to initially anisotropic materials. The thesis has demonstrated the need to provide an integrated view on experiments and numerical simulations to obtain the description of the onset of plasticity. To achieve this goal, a specific methodology was developed - the procedure which combines experimental techniques with numerical simulations supported by a precise description of the behavior of materials. As part of the approach to numerical modeling, numerical analyzes were performed to correct the inaccuracies of the experimental results presented. In addition, Burzy?ski isotropically been implemented in the finite element method via UMAT (user subroutine for ABAQUS). The versatility of description performance is illustrated by the application of materials with amorphous structure and cubic crystals of different systems: structure FCC (face centered cubic) and BCC (body centered cubic). Examples : - type material FCC structure - OFHC Cu, Oxygen Free High Conductivity Copper material BCC structure type - E335 , not alloyed high strength and example of the amorphous steel materials - polycarbonate (PC) and biopolymers ( PLA / PBAT ) . Materials for specific analyzes were performed to obtain microstructural and mechanical properties via wide range of stress tests in various loading conditions. The number of copies of data found in the literature of the pressure sensitive and / or anisotropic materials was initially analyzed. It has been proven that the proposed criteria provide accurate approximation of the state of early plasticity in relation to other terms in common use. The resulting criteria appear to be universal and widely applicable method of obtaining a description of the appearance of the plasticity
Identifer | oai:union.ndltd.org:theses.fr/2013LORR0271 |
Date | 21 June 2013 |
Creators | Frąś, Teresa |
Contributors | Université de Lorraine, Akademia górniczo-hutnicza im. Stanisława Staszica (Cracovie, Pologne), Rusinek, Alexis, Pęcherski, Ryszard B. |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds