The aim of this work is to evaluate the mechanical strength of a co-polymer of 2-hydroxyethylmethacrylate (HEMA) and methylmethacrylate (MMA), so that it can be applied as an interfacial layer between bone cement and steel implants to improve their performance and life. Finite element (FE) analysis techniques are used to assess the behavior of the interface layer under static and dynamic loading conditions. The material property of the co-polymer is a function of its composition and water saturation. The factors affecting the strength of the bone-implant interface are many. Implant interfacial fracture can lead to decreased stability. Fatigue life is a very important process in failure. The results obtained from static and dynamic analyses show that increasing the percentage of HEMA improves the strength of the interface by reducing the stiffness of the implant, absorbing more energy and by reducing the interfacial stress peaks and making the stress distribution more nearly uniform.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1127 |
Date | 01 January 2004 |
Creators | Chhabra, Nitin |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0016 seconds