Return to search

Uniform residence time in microreactor-assisted solution deposition of CdS thin-films for CIGS photovoltaic cells

Photovoltaic (PV) cells have long been an attractive alternative for the consumption of fossil fuels but current manufacturing practices suffer from poor energy efficiency, large carbon footprints, low material utilization, high processing temperatures and high solvent usage. A critical step in PV production is the deposition of CdS as a thin film to serve as a "buffer layer" between the optically absorbent layer and the transparent conducting oxide (TCO) layer to complete an effective p-n junction.
The development of an inexpensive, low temperature, constant flow deposition process for producing CdS films is investigated. Micro-assisted solution concepts are implemented to promote the selectivity of heterogeneous surface reactions over homogeneous bulk precipitation. Analytical models based off Hagen-Poiseuille equation for fluid flow are coupled with computational fluid dynamic simulations to produce uniform flow fields within the deposition step permitting uniform film coverage on large substrates. / Graduation date: 2011 / Access restricted to the OSU Community at author's request from Jan. 11, 2011-Jan. 11, 2012.

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/19809
Date12 January 2011
CreatorsHires, Clayton Lamar
ContributorsPaul, Brian K.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0019 seconds