Return to search

Application of Wavelet-probabilistic Network to Power Quality and Characteristic Harmonics Detection

Power quality has attracted considerable attentions from utilities and customers due to the popular uses of the sensitive electronic equipment. Harmonics, voltage swell, voltage sag, and power interruption could downgrade the service quality. Harmonic currents injected by non-linear loads throughout the network could degrade the quality of services to sensitive high-tech customers such as the science park of Xin-Zhu and Tai-Nan in Taiwan. In recent years, massive rapid transit system (MRT) and high speed railway (HSR) have been rapidly developed, with the applications of wide-spread semi-conductor technologies in the auto-traction system. Swell and sag could occur from thundering, capacitor switching, motor starting, nearby circuit faults, or artificial calamity, and could also attribute to the power interruption. To ensure the power quality, harmonic and voltage disturbances detection becomes important. Fourier transformation is used to analyze distorted waves in the frequency domain, with low-pass filter used to eliminate the fundamental component, and then characteristic harmonics can be detected. The complicated process is difficult to operate in real-time. The method-based processing model with physical harmonic data is needed to simplify the processing architecture.
The thesis proposes to use wavelet transformation (WT) and probabilistic neural network (PNN) for power quality and characteristic harmonics detection. Wavelet-probabilistic network (WPN) is first used to extract distorted waves. PNN based processing model will then analyze the harmonic components. Computer simulation shows a simplified model to shorten the processing time in this study.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0720104-134128
Date20 July 2004
CreatorsTsao, Ming-Chieh
ContributorsTun-Sheng Su, Whei-Min Lin, Jen-Hao Teng, Ta-Peng Tsao
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720104-134128
Rightswithheld, Copyright information available at source archive

Page generated in 0.0021 seconds