Return to search

Nitric oxide at the nucleus tractus solitarii and rostral ventrolateral medulla in protection against the high fructose diet-induced hypertension by peroxisome proliferator-activated receptor activators

Insulin resistacne and hyperinsulinemia are important risk factors for development of type 2 diabetes mellitus and hypertension. Recently, accumulating evidence has shown that endothelial dysfunction, increases in peripheral vessel resistnce and overactivation of the sympathetic neruvous system contribute to the development of insulin resistance-associated hypertension. The signigicance of cardiovascular regulatory center in the brain stem in pathophysiology of the insulin resistance-induced hypertension, however, has not been explored. Previously studies have proved that increases in superoxide anion (O2£»−) production in peripheral tissue and suppression of nitric oxide (NO) expression in the endothial cell are involved in insulin resistance and hypertension. The nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM) are involved in neural regulation of blood pressure by serving respectively as the primary baroreceptor afferent terminal sites and the location of sympathetic premotor neurons for cardiovascular regulation in the brain stem. Clinically, the peroxisome proliferator-activated receptor (PPAR) agonist is commonly prescribed for the treatment of type 2 diabetes mellitus by activate PPAR£^ to enhance peripheral tissue insulin sensitizing ability, to maintain blood glucose homeostasis. Intriguingly, both animal and human studies revealed that PPAR£^ agonist also possesses blood pressure lowering effect, although the underlying mechanism is not clear. We therefore investigated in the present study the role of NO and O2£»− in the NTS and RVLM in the pathophysiology of the high fructose diet-induced insulin resistacne and hypertension, and to evaluate the potential central
antihypertensive effect of PPAR£^ agonist in rats subjected to high fructose diet.
The normotensive male Wistar Kyoto rats (WKY) were divided into 4 groups, including 3 experimental group that received 60% high fructose diet for 8 weeks and one control group that received regular chow diet for the same period of time. Within the 3 experimental groups, two of them received oral administration of rosiglitazone or pioglitazone (10 mg/kg/day) at the last two weeks (from week 6 to week 8) and the third group received saline ingestion. Systemic blood pressure was measured by tail vein sphygmomanometer very week and venous blood was drawn every other week to measure blood sugar and insulin level. At the end of the experiment, oral glucose tolerance test (OGTT) was tested and O2£»− and NO production in the NTS and RVLM were quantified.
In adult male WKY rats I found that high fructose diet induced insulin resistance, hypertriglycemia and hypertension. Oral administration of rosiglitazone or pioglitazone significantly blunted the hypertension, hypertriglyceridemia, and ameliorated insulin resistance induced by high fructose diet. The high fructose diet also increased tissue level of O2£»− in the NTS and RVLM. PPAR£^ agonist treatment for two weeks did not affect the induced oxidative stress in these two nuclei. NO production was also increased in the NTS and RVLM after high fructose diet for 6 weeks. Oral treatment of rosiglitazone or pioglitazone significantly attenuated NO production after high fructose diet. At the molecular level, protein expressions of the NADPH oxdase subunits (p40phox, p47phox and gp91phox) and superoxide dismutase (cupper/zinc SOD, mitochondrial SOD, extracellular SOD) were not altered in the NTS or RVLM after high fructose diet alone or in addition with rosiglitazone or pioglitazone treatment. In the RVLM, there was a significant increase in neuronal NO synthase (nNOS) expression with concomitant decrease in inducible NOS (iNOS) expression. Oral treatment of PPAR£^ agonist for two weeks significantly suppressed the induced nNOS upregulation and attenuated the induced downregulation of iNOS expression in the RVLM.
Together these results suggest that overproduction of O2£»− and NO in the NTS and RVLM may related to the development of insulin resistance-associated hypertension. Oral treatment of PPAR£^ agonist, including rosiglitazone and pioglitazone, may provide antihypertensive protection by superssing the induced-nNOS expression and increasing the induced-iNOS expression in the RVLM.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0201110-142405
Date01 February 2010
CreatorsTsay, Shiow-jen
ContributorsShin-cheng Dean, Julie Y. H. Chan, Alice A. W. Chang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0201110-142405
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0019 seconds