Return to search

Normalization and analysis of high-dimensional genomics data

In the middle of the 1990’s the microarray technology was introduced. The technology allowed for genome wide analysis of gene expression in one experiment. Since its introduction similar high through-put methods have been developed in other fields of molecular biology. These high through-put methods provide measurements for hundred up to millions of variables in a single experiment and a rigorous data analysis is necessary in order to answer the underlying biological questions. Further complications arise in data analysis as technological variation is introduced in the data, due to the complexity of the experimental procedures in these experiments. This technological variation needs to be removed in order to draw relevant biological conclusions from the data. The process of removing the technical variation is referred to as normalization or pre-processing. During the last decade a large number of normalization and data analysis methods have been proposed. In this thesis, data from two types of high through-put methods are used to evaluate the effect pre-processing methods have on further analyzes. In areas where problems in current methods are identified, novel normalization methods are proposed. The evaluations of known and novel methods are performed on simulated data, real data and data from an in-house produced spike-in experiment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-53486
Date January 2012
CreatorsLandfors, Mattias
PublisherUmeå universitet, Institutionen för matematik och matematisk statistik, Umeå : Umeå Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds