We investigate the behavior of moving droplets and rivulets, driven by a combination of gravity and surface shear (wind). The problem is motivated by a desire to model the behavior of raindrops on aircraft wings. We begin with the Stokes equations and use the approximations of lubrication theory to derive the specific thin film equation relevant to our situation. This fourth-order partial differential equation describing the height of the fluid is then solved numerically from varying initial conditions, using a fully implicit discretization for time stepping, and a precursor film to avoid singularities at the drop contact line. Results describing general features of droplet deformation, limited parameter studies, and the applicability of our implementation to the long-term goal of modeling wings in rain are discussed.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1145 |
Date | 01 January 2003 |
Creators | Bryant, Benjamin |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Page generated in 0.0019 seconds